Communication and Media Engineering

Modulhandbuch

 Zurück 

Signal and System Theory

Empfohlene Vorkenntnisse

• Basic knowledge of mathematics for engineers, in particular complex numbers
• Basic knowledge of communications engineering and signal theory

Lehrform Vorlesung
Lernziele / Kompetenzen

Upon successful completion of this module, the student will be able to:

  • classify and describe signals and linear time-invariant (LTI) systems using methods of signal and system theory.
  • apply the fundamental transformations of continuous-time and discrete-time signals and systems. They can describe and analyse deterministic signals and systems mathematically in both time and frequency domain. In particular, they understand the effects in time domain and frequency domain which are caused by the transition of a continuous-time signal to a discrete-time signal.
  • determine the limits of data compression as well as of data transmission through noisy channels and based on those limits to design basic parameters of a transmission scheme
  • compare the properties of basic channel coding and decoding schemes regarding error detection or correction capabilities
Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 120 h
Workload 180 h
ECTS 6.0
Voraussetzungen für die Vergabe von LP

Module exam K120

Leistungspunkte Noten

6 CP,  grade 1 ... 5

Modulverantwortlicher

Prof. Dr.-Ing. Stephan Pfletschinger

Empf. Semester 1
Haeufigkeit jedes Jahr (WS)
Verwendbarkeit

Master-Studiengang CME

Veranstaltungen

Information Theory and Coding

Art Vorlesung
Nr. EMI405
SWS 2.0
Lerninhalt

1. Basic Laws of Probability and Random Variables

  • Events and Sets
  • Joint and Conditional Probabilities, Independence and Bayes Theorem
  • Continuous and Discrete Random Variables
  • Key Parameters of Random Variables: Mean, Variance, Moments
  • Jointly Distributed Random Variables

2. Entropy and Information Content

  • Information Content
  • Entropy and Redundancy

3. Source Coding

  • The Source Coding Theorem
  • Shannon-Fano Coding
  • Huffman Coding

4. Conditional Entropy and Mutual Information

  • Conditional and Joint Entropy
  • Mutual Information
  • Chain Rules and the Data Processing Theorem

5. Channel Capacity

  • The Channel Coding Theorem
  • The Binary Symmetric and the Binary Erasure Channel
  • Entropy and Mutual Information for Continuous Random Variables
  • The AWGN Channel

6. Channel Coding

  • Coding in Digital Communications
  • Error Detection and Error Correction
  • Binary Linear Block Codes
  • Decoding of Short Binary Linear Block Codes
Literatur

Stefan. M. Moser, Po-Ning Chen, A Student’s Guide to Coding and Information Theory, Cambridge University Press, 2012.
Benedetto, S., Biglieri, E., Principles of Digital Transmission, Kluwer Academic, Plenum Publishers, 1999.
Robert McEliece: The Theory of Information and Coding, Student Edition, Cambridge University Press, 2004.
David MacKay: Information Theory, Inference, and Learning Algorithms, Cambridge University Press, 2003.
Thomas M. Cover, Joy A. Thomas, Elements of Information Theory, Wiley, 2006.Alan V. Oppenheim, Alan S. Willsky: Signals & Systems. Pearson, 2013.

Signals and Systems

Art Vorlesung
Nr. EMI403
SWS 2.0
Lerninhalt

1. Analog and Digital Signals in Time Domain

  • Definition of Signals
  • Elementary Signals: step, rectangle, triangle, sinusoidal signals, complex exponential
  • Dirac Impulse
  • Signal Properties and Operations
  • Orthogonality of Signals

2. Description of Systems in Time Domain

  • Definition and Basic Properties
  • Memoryless and Dynamic Systems
  • Linear Time-Invariant (LTI) Systems
  • Impulse Response and Convolution Integral
  • Unit Step Response
  • Eigenfunctions

3. Fourier Series and Fourier Transform

  • Orthogonal Periodic Functions
  • Fourier Series
  • Fourier Transform: definition, properties, transforms of periodic functions, the Dirac impulse train, application to LTI systems
  • A/D Conversion and the Sampling Theorem
Literatur

Stefan. M. Moser, Po-Ning Chen, A Student’s Guide to Coding and Information Theory, Cambridge University Press, 2012.
Benedetto, S., Biglieri, E., Principles of Digital Transmission, Kluwer Academic, Plenum Publishers, 1999.
Robert McEliece: The Theory of Information and Coding, Student Edition, Cambridge University Press, 2004.
David MacKay: Information Theory, Inference, and Learning Algorithms, Cambridge University Press, 2003.
Thomas M. Cover, Joy A. Thomas, Elements of Information Theory, Wiley, 2006.Alan V. Oppenheim, Alan S. Willsky: Signals & Systems. Pearson, 2013.

 Zurück