Communication and Media Engineering
Modulhandbuch
Digital Image Processing
| Empfohlene Vorkenntnisse |
Linear Algebra |
||||||||||||||||||||
| Lehrform | Vorlesung/Labor | ||||||||||||||||||||
| Lernziele / Kompetenzen |
Target skills: The student will gain an overview on established and modern image processing techniques. The course provides tools, methods, models and techniques for the following topics: image formation, optics, imagers, color, image segmentation, image analysis, image features, image alignment, estimation in computer vision, programming and deep learning.
Competences: The student will understand basic problems in image processing and machine vision, e.g. image segmentation, feature detection, image matching or estimation problems in alignment. He/she will know methods, algorithms and common techniques to solve the above mentioned problems. The student will be able to computationally apply the methods on given low-level and higher-level image processing tasks in real world computer vision problems.
|
||||||||||||||||||||
| Dauer | 1 | ||||||||||||||||||||
| SWS | 4.0 | ||||||||||||||||||||
| Aufwand |
|
||||||||||||||||||||
| ECTS | 4.0 | ||||||||||||||||||||
| Voraussetzungen für die Vergabe von LP |
Digital Image Processing: written exam K60 |
||||||||||||||||||||
| Leistungspunkte Noten |
4 CP, grades 1 ... 5 |
||||||||||||||||||||
| Modulverantwortlicher |
Prof. Dr.-Ing. Stefan Hensel |
||||||||||||||||||||
| Empf. Semester | 3 | ||||||||||||||||||||
| Haeufigkeit | jedes 2. Semester | ||||||||||||||||||||
| Verwendbarkeit |
Master-Studiengang CME |
||||||||||||||||||||
| Veranstaltungen |
DIP Lab
Digital Image Proc.
|