|
Veranstaltungen
|
Automotive Radar
| Art |
Vorlesung |
| Nr. |
EMI442 |
| SWS |
2.0 |
| Lerninhalt |
Advanced Driver Assistance Systems (ADAS), employing camera, LiDAR, and radar technologies, are today in worldwide deployment. By 2024, more than 140 million automotive radar sensors were shipped in a single year, and the global installed base on the road now exceeds 500 million radar units.
ADAS are no longer seen as comfort features, but have become essential safety systems. In particular, radar sensors play a key role in Automatic Emergency Braking (AEB) for cars and trucks, contributing significantly to accident prevention and road safety worldwide.
Looking ahead, radar technology is also a cornerstone for automated and autonomous driving. Higher levels of driving automation require continuous environmental perception under all weather and lighting conditions — an area where radar excels compared to other sensing modalities.
- History of automotive radar
- Radar basics
-Wave propagation -Automotive radar frequencies and regulations -Comparison to other technologies
- Radar techniques
-Radar principles and components -Radar signal modulation -Basic radar signal processing -Radar system specifications and characteristics
- Principles for angle measurement
- Automotive radar in praxis
-Applications of automotive radars -Examples of automotive radars -Radar sensor vehicle installation -Mutual Interference of radar sensors
- Future trends in automotive radar
|
| Literatur |
Christian Waldschmidt, Christina Bonfert, Timo Grebner, Millimeter Wave Radar - Hardware and Signal Processing, Springer, 2025 Jonah Gamba, Radar Signal Processing for Autonomous Driving, Springer, 2025 Winner, H., Hakuli, S., Lotz, F., Singer, C. (Eds.), Handbook of Driver Assistance Systems, Basic Information, Components and Systems for Active Safety and Comfort, Springer, 2016. Skolnik, M.,Radar Handbook,3rd Edition, McGraw-Hill Education, 2008 Pozar, D. M., Microwave Engineering, 2th Edition, Wiley, 2011. |
Software Defined Radio
| Art |
Labor |
| Nr. |
EMI865 |
| SWS |
2.0 |
| Lerninhalt |
Im Laufe dieser LV wird ein funktionsfähiges digitales Übertragungssystem aufgebaut, wobei die folgenden Teilabschnitte durchlaufen werden:
- Installation der Software und Inbetriebnahme des SDR-Transceivers
- Spektralanalyse von vorhandenen Signalen
- Modulation und Demodulation
- Synchronisierung auf Empfängerseite
- Übertragung und Detektion von Daten
|
| Literatur |
- B. Stewart, K. Barlee, D. Atkinson, L. Crockett, Software Defined Radio using Matlab and Simulink and the RTL-SDR. www.desktopsdr.com, 2015.
- T. F. Collins, R. Getz, D. Pu, A. M. Wyglinski, Software-Defined Radio for Engineers. Artech House, 2018.
- M. Rice, Digital Communications: A Discrete-Time Approach, Pearson, 2009.
|
|