|
Veranstaltungen
|
Data Modelling, Mining and Analytics
| Art |
Vorlesung |
| Nr. |
M652 |
| SWS |
4.0 |
| Lerninhalt |
Die LV gliedert sich folgendermaßen:
- Data Mining, CRISP, Ähnlichkeits- und Abstandsmaße
- Data Preparation
- Lineare Regression
- Zeitreihen
- Lineare Optimierung
- Clustering, Klassifikation, Assoziation, Generalisierung
- Visualisierung
- Markov-Ketten
- ANOVA
Folgende Lernziele und Kompetenzen werden gemeinsam mit den Studierenden erarbeitet: • Prinzipien und Methoden des Data Mining und der Datenanalyse kennen und verstehen und • auf gegebene Problemstellungen aus verschiedenen Anwendungsbereichen anwenden können |
| Literatur |
Die aktuelle Literaturliste wird in der Vorlesung bekannt gegeben. Auszug aus der Literaturliste:
- Cleve, J./Lämmel, U. (akt. Ausgabe): Data Mining. München
- Albright, S.C./Winston, W.L. (akt. Ausgabe): Business Analytics. Cengage Learning
- C.T. Ragsdale (akt. Ausgabe): Spreadsheet Modeling & Decision Analysis, Cengage Learning
|
Trends im Datenmanagement
| Art |
Seminar |
| Nr. |
M654 |
| SWS |
2.0 |
| Lerninhalt |
- Für die Studierenden werden aktuelle Themen im Datenmanagement vergeben
- Nach einer Kurzeinführung durch den Dozenten bearbeiten die Studierenden die Themen selbstständig, recherchieren in der Literatur und präsentieren die Ergebnisse
Lernziele:
- ein aktuelles Thema im Datenmanagement wissenschaftlich recherchieren und strukturiert aufarbeiten und präsentieren können
- weitere aktuelle Themen kennen und verstehen
|
| Literatur |
Die aktuelle Literaturliste wird in der Vorlesung bekannt gegeben.
- J. Cleve, U. Lämmel. Data Mining. Oldenburg Wissenschaftsverlag, 2014 (ebook)
- S.C. Albright, W.L. Winston: Business Analytics. Cengage Learning, 2013
- C.T. Ragsdale. Spreadsheet Modeling & Decision Analysis, Cengage Learning, 2015
- E. Alpaydin: Maschinelles Lernen. Oldenburg Verlag, 2008
|
|