M. Sc. Renewable Energy and Data Engineering

Studieren Sie konventionelle und erneuerbare Energiesysteme, intelligente Stromnetze und die zugrundeliegenden Algorithmen sowie Energieeffizienzmaßnahmen.

Modulhandbuch

 Zurück 

Kraftwerke und Energiesysteme

Lehrform Vorlesung
Lernziele / Kompetenzen

The students know in-depth fluid dynamics and mechanics of thermal and hydraulic  turbo-machinery. They know about different types of steam generators and understand their requirements with respect to fluid mechanics and heat exchange in two-phase-flow. The students are aware of instabilities, which can occur when operating steam generators. The students are able to formulate a specification sheet for the main components of thermal power plants. Optimization strategies for the operating conditions of power plants can be judged and examined in a qualified way.

Dauer 1
SWS 8.0
Aufwand
Lehrveranstaltung 60
Selbststudium / Gruppenarbeit: 60
Workload 120
ECTS 8.0
Voraussetzungen für die Vergabe von LP

Klausurarbeit, 180 Min.

Leistungspunkte Noten

8 ETCS

Modulverantwortlicher

Prof. Dr.-Ing. Andreas Schneider

 

Haeufigkeit jedes Jahr (WS)
Verwendbarkeit

Master RED

Veranstaltungen

Power Plants / Kraftwerke

Art Vorlesung/Übung
Nr. M+V3046
SWS 4.0
Literatur
  • Nag; Power Plant Engineering;  McGrawHill, 2014
  • El-Wakil; Powerplant Technology; McGrawHill, 1995
  • Dolezal; Energetische Verfahrenstechnik; Teubner Stuttgart, 1983
  • VDI-Wärmeatlas

Energiesysteme

Art Vorlesung/Übung
Nr. M+V3054
SWS 4.0
Lerninhalt

1. Introduction and Overview
1.1. General
1.2. Working Fluid Water
1.3. Working Fluid Air
1.4. Combined Cycles
1.5. Possibilities / Major Components
1.6. Sites
1.7. Brief Economy
1.8. Cost Discussion
1.9. Optimization
1.10. Energy Consumption in Germany


2. Thermodynamic Review

3. Power Boilers
3.1 Furnaces
3.1.1 Fuels
3.1.1.1 Solid Fuels
3.1.1.2 Liquid Fuels
3.1.1.3 Gaseous Fuels
3.1.2 Combustion Calculation
3.1.3 Combustion Systems
3.1.3.1 Grate Firing
3.1.3.2 Fluidized Bed Combustion
3.1.3.3 Dust Firing
3.1.3.4 Combustion of Liquid and Gaseous Fuels
3.1.4 Operation Problems
3.2 Power Boilers
3.2.1 Historical Look back
3.2.2 Heat transport
3.2.3 Basics of Twophase Flows
3.2.3.1 Heattransfer with Twophase Flows
3.2.3.2 Boiling Crises
3.2.3.3 Pressure Loss with Twophase Flows
3.2.4 Boiler Systems and Types
3.2.4.1 Shell-Type Power Boilers (Fluegas Tube SG)
3.2.4.2 Water Tube Power Boilers
3.2.4.3 Heat Recovery Power Boilerss
3.2.5 Design of a Power Boiler
3.2.5.1 Balance Power Plant (Heat Process Diagram)
3.2.5.2 Total Balance Steam Generator
3.2.5.3 Arrangement and Balance of Heating Areas
3.2.5.4 Materials for Boilers
3.2.5.5 Design of Heating Areas
3.2.6 Aspects of Construction
3.2.7 Starting, Shut-Down and Control of Boilers
3.3 Nuclear Boilers

4. Steamturbines
4.1 Introduction
4.2 Operating processes
4.3 main equation of the theory of turbines
4.4 working processes
4.4.1 constant pressure (=simple impulse) turbine
4.4.2 overpressure / reaction turbine
4.4.3 radial turbines
4.4.4. comparison between simple impulse and reaction turbines
4.4.5 specific numbers of the machine
4.4.6 performance / power and consumption
4.5. Fundamentals of turbine control
4.6. Miscellaneous
4.6.1 Casing
4.6.2 Rotor types
4.6.3 Blade roots
4.6.4 Cover Bands and Tie Wire
4.6.5 Bearing

 

Literatur

 

  • Dolezal; Energetische Verfahrenstechnik; Teubner Stuttgart, 1983
  • Thomas, Thermische Kraftanlagen, Springer Berlin, 1984
  • El-Wakil; Powerplant Technology; McGrawHill, 1995
  • VDI-Wärmeatlas, Springer, Berlin, 2006
  • Nag; Power Plant Engineering; McGrawHill, 2014
  • Strauss, Kraftwerkstechnik, SpringerVieweg, Berlin, 2016
 Zurück