M. Sc. Renewable Energy and Data Engineering
Modulhandbuch
Energieinformatik
Lehrform | Vorlesung | ||||||||||
Lernziele / Kompetenzen |
The students have an understanding of Big Data Analytics. They know the different process phases in Big Data Analytics (collection, processing, cleansing, explorative statistics, modeling, evaluation and representation of data). They know algorithm applied in the different phases and are able to select suitable methods for practical problems. Further, students know about real time Big Data analytics. They can clearly differentiate between terms like pattern recognition, machine learning, and deep learning. |
||||||||||
Dauer | 1 | ||||||||||
SWS | 8.0 | ||||||||||
Aufwand |
|
||||||||||
ECTS | 8.0 | ||||||||||
Voraussetzungen für die Vergabe von LP |
zwei Klausurarbeiten, je 90 Min. plus Laborarbeit |
||||||||||
Leistungspunkte Noten |
8 Credits |
||||||||||
Modulverantwortlicher |
Mr. Uchenna Johnpaul Aniekwensi |
||||||||||
Haeufigkeit | jedes 2. Semester | ||||||||||
Verwendbarkeit |
Master PDE |
||||||||||
Veranstaltungen |
Energieinformatik 1/Energy Data Engineering 1
|