Nachhaltige Energiesysteme

Modulhandbuch

 Zurück 

Regelungstechnik

Empfohlene Vorkenntnisse

Grundlagen der Mathematik, Elektrotechnik, Physik, Technische Mechanik

Lehrform Vorlesung/Labor
Lernziele / Kompetenzen

Die Studierenden können ein zusammenhängendes Gesamtsystem des Maschinenbaus in einzelne (Sub-)Systeme aufteilen, zwischen denen ein Signalaustausch stattfindet.

Sie begreifen ein Signal als physikalische Größe, die eine Information trängt, und sind in der Lage, einfache lineare Systeme mathematisch zu beschreiben und einfach Gesamtsysteme analytisch zu berechnen.

Sie haben ausreichend Abstraktionsvermögen, um das Verhalten nichtlinearer Systeme abschätzen zu können und mit entsprechenden Computerprogrammen auch nichtlineare Systeme simulieren zu können.

Sie kennen einfache Regler und können diese parametrieren. Ferner erkennen sie Systeme, die bezüglich ihrer Stabilität kritisch sind, und können aufzeigen, durch welche Maßnahmen die Stabilität verbessert werden kann.

Die Studierenden sind in der Lage, sich selbstständig in gängige Messverfahren einzuarbeiten und deren Eignung für einen konkreten Anwendungsfall abzuschätzen.

Dauer 1
SWS 5.0
Aufwand
Lehrveranstaltung 75
Selbststudium / Gruppenarbeit: 135
Workload 210
ECTS 7.0
Voraussetzungen für die Vergabe von LP

Klausurarbeit, 90 Min., und Laborarbeit (muss m. E. attestiert sein)

Modulverantwortlicher

Professor Dr.-Ing. Jens Pfafferott

Empf. Semester 6
Haeufigkeit jedes Jahr (SS)
Verwendbarkeit

Bachelor NES - Hauptstudium

Veranstaltungen

Regelungstechnik mit Labor

Art Vorlesung/Labor
Nr. M+V1038
SWS 5.0
Lerninhalt

Grundlagen

  • Einführung: System/Signal/Übertragungsfunktion
  • Definition und Aufgabenstellungen der Mess- und Regelungstechnik
  • Darstellung von MSR-Aufgaben Symbolik, Normen, Symbole, Blockdiagramme

Wiederholung komplexe Zahlen und Funktionen

  • Normalform und Gauß'sche Zahlenebene, trigonomische Form, Exponentialform
  • Rechnen mit komplexen Zahlen und Funktionen: Ortskurve und Bodediagramm

Systemtheoretische Grundlagen

  • Physikalischer Prozess, technischer Prozess, technisches/dynamische System
  • Eingangs- und Ausgangsgrößen, Systemgrößen, Systemparameter, Systemanalyse
  • Übertragungsverhalten (im Zeitbereich), Übertragungsfunktion, insb. Impulsantwort, Sprungantwort und Antwort auf periodische Anregung

Lineare, kontinuierliche Systeme im Zeit- und Bildbereich

  • Modellbildung eines Übertragungssystems (Aufstellen der Differentialgleichung), Test- und Antwortfunktion
  • Linearisierung, Übertragungsfunktion, Frequenzgang, elementare Übertragungsglieder, Frequenzdarstellung zusammengesetzter Systeme
  • Umformen von Blockstrukturen
  • Anwendung der Regeln auf verschiedene Problemstellungen

Der Regelkreis

  • Zeitverhalten typischer Regler, Standard-Regelkreis, Regelkreisgleichung, Führungs- und Störverhalten, statisches und dynamisches Verhalten
  • Synthese von Regelkreisen

Stabilität und Reglerentwurf im Zeitbereich

  • Kenngrößen eines Regelkreises und Stabilitätskriterien
  • Bestimmung von Reglerparametern/Einstellregeln
Literatur
  • Aufgaben- und Materialsammlung als Unterlage für die Vorlesung
  • Jürgen Bechtloff: Regelungstechnik, Vogel Verlag, Würzburg, 2012, 1. Auflage
  • Hildebrand Walter: Grundkurs Regelungstechnik, Vieweg + Teubner, Wiesbaden, 2009, 2. Auflage

 

Große Auswahl an weiterführender Literatur in der Hochschulbibliothek

Download

 Zurück