Module manual


Business Mathematics


Mathematical foundations

Teaching methods Lecture
Learning target / Competences

Students acquire the basic mathematical knowledge required for a degree in economics. They develop their ability to abstract, their methodological and problem-solving skills as well as their analytical abilities. They master basic mathematical methods and are able to apply it competently using business-related case studies. They learn how to use software for problem-solving purposes.

Duration 1 Semester
Hours per week 4.0
Classes 60 h
Individual / Group work: 90 h
Workload 150 h
ECTS 5.0
Requirements for awarding credit points

Written exam (K90)

Responsible person

Prof. Dr. Thomas Wenger

Recommended semester 1. Semester
Frequency Every sem.

Bachelor’s degree programs:
Betriebswirtschaft/Logistik und Handel
Medientechnik/Wirtschaft plus


Business Mathematics

Type Lecture
Nr. B+W0102
Hours per week 4.0
  • Sets and logic: set theory, sets of numbers, logical expressions and inferences, proofs.
  • Combinatorics and basic concepts (incl. sum and product signs, binomial coefficients, arithmetic and geometric series).
  • Financial mathematics (interest calculation, depreciation, annuity calculation, amortization, effective interest rate, correction factors for interest calculation during the year, applications).
  • Linear algebra (matrix and vector calculus, linear independence, inverse matrix, solvability and solution of linear systems of equations, applications)
  • Linear optimization (problem definition, simplex methods, applications)
  • Differential calculus (sequences and series, limits, derivative, extreme value problems, derivative for functions of several variables and related optimization problems, applications especially for economic functions)
  • Introduction to integral calculus (indefinite and definite integral, integration methods, applications)

Handouts (with basic theory and exercises)
Arrenberg, J. (2015): Finanzmathematik: Lehrbuch mit Übungen, 3., rev. ed., De Gruyter Oldenbourg, Berlin
Mückenheim, W. (2015): Mathematik für die ersten Semester, 4. ed., De Gruyter, Berlin
Schwarze, J. (2015): Aufgabensammlung zur Mathematik für Wirtschaftswissenschaftler. 7., rev. ed., NWB Verlag, Herne/Berlin
Kemnitz, A. (2014): Mathematik zum Studienbeginn, 11., erw. ed., Springer Spektrum, Wiesbaden
Auer, B./ Seitz, F. (2013): Grundkurs Wirtschaftsmathematik: prüfungsrelevantes Wissen, praxisnahe Aufgaben, komplette Lösungswege, 4., rev. ed., Gabler, Wiesbaden
Tietze, J. (2013): Einführung in die angewandte Wirtschaftsmathematik, 17., erw. ed., Springer Spektrum, Wiesbaden
Schwarze, J. (2011): Mathematik für Wirtschaftswissenschaftler 1: Grundlagen, 13., rev. ed., NWB Verlag, Herne/Berlin
Schwarze, J. (2011): Mathematik für Wirtschaftswissenschaftler 2: Differential- und Integralrechnung, 13., rev. ed., NWB-Verlag, Herne/Berlin
Schwarze, J. (2011): Mathematik für Wirtschaftswissenschaftler 3: Lineare Algebra, Lineare Optimierung und Graphentheorie, 13., rev. ed., NWB Verlag, Herne/Berlin