M. Sc. Renewable Energy and Data Engineering

Study conventional and renewable energy systems, smart grids and the underlying algorithms as well as energy efficiency measures.

Modul manual

 Zurück 

Energiespeicherung, -umwandlung und -transport

Lehrform Vorlesung
Lernziele / Kompetenzen

The students are familiar with various types of electrical and thermal energy conversion and storage technology. They have a specifically high understanding of lithium-ion batteries, polymer electrolyte membrane fuel cells, and alkaline electrolyzers. On the fundamental level, they know the thermodynamic and kinetic working principles of electrochemical cells. On the technology level, the students know the setup and design principles of different systems, including their properties in terms of efficiency and durability. On the application level, the students are aware of applicability, requirements, and potential of different energy storage and transport systems. They have an insight into the economic status of energy storage technologies and understand the future trends in research and development.

Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 60
Selbststudium / Gruppenarbeit: 60
Workload 120
ECTS 4.0
Voraussetzungen für die Vergabe von LP

Klausurarbeit, 90 Min.

Leistungspunkte Noten

4 ECTS

Modulverantwortlicher

Prof. Dr. rer. nat. habil. Wolfgang Bessler

Haeufigkeit jedes Jahr (WS)
Verwendbarkeit

Master PDE

Veranstaltungen

Energiespeicherung, -umwandlung und -transport

Art Vorlesung/Übung/Labor
Nr. M+V3047
SWS 4.0
Lerninhalt

A. Einführung und Geschichte

B. Energiespeicherung in Batterien

C. Energieumwandlung in Brennstoffzellen und Elektrolyseuren

D. Stationäre Anwendungen

E. Mobile Anwendungen

Literatur
  • Wolfgang Bessler, Vorlesungsskript
  • Reiner Korthauer, Lithium-ion batteries: Basics and applications, Springer 2018
  • Ryan O'Hayre, Suk-Won Cha, Whitney Colella, Fritz B. Prinz, Fuel cell fundamentals, Wiley 2016
 Zurück