Mechatronik PLUS Pädagogik

Kompetenzen der Ingenieursdisziplinen Elektrotechnik und Maschinenbau sowie der Informatik verbinden zu einem interdisziplinären und systemtechnischen Denken.

Modulhandbuch

 Zurück 

Mechatronik plus (MK-plus)

PO-Version [  20152  ]

Angewandte Informatik

Empfohlene Vorkenntnisse

Ingenieur-Informatik und Embedded Systems

Lehrform Vorlesung
Lernziele / Kompetenzen

- Methoden des Software-Engineerings im Umfeld von Embedded Systems einsetzen können
- Besonderheiten der Softwaretechnik für Embedded Systems kennen lernen
- Software unter besonderer Berücksichtigung von Qualität und Stabilität entwickeln können
- Verfahren modellbasierter Softwareentwicklung kennen and anwenden lernen
- Entwurfsverfahren für Echtzeitsysteme kennen lernen
- Software-Architekturen für Embedded Systems verstehen können
- Prinzipien des Web Engineerings verstehen
- Web Technologien gezielt in Projekten einsetzen können

Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 90 h
Selbststudium / Gruppenarbeit: 90 h
Workload 180 h
ECTS 5.0
Voraussetzungen für die Vergabe von LP

Klausur K120

Leistungspunkte Noten

5 Creditpunkte

Modulverantwortlicher

Prof. Dr.-Ing. Axel Sikora

Empf. Semester 7
Haeufigkeit jedes Semester
Verwendbarkeit

Bachelor MK, Hauptstudium
Bachelor MK-plus, Hauptstudium

Veranstaltungen

Kommunikationsnetze

Art Vorlesung
Nr. EMI215
SWS 2.0
Lerninhalt

OSI- und TCP/IP-Referenzmodell

Sicherungsschicht

  • Rahmenbildung
  • Fehlerkorrektur und Fehlererkennung
  • Schiebefensterprotokolle
  • Mehrfachzugriffsprotokolle
  • Kopplung von Netzwerken

Vermittlungsschicht

  • Routing
  • Routing im Internet
  • IPv4 (inkl. Subnetting)
  • IPv6

Transportschicht

  • TCP
  • UDP

Anwendungsschicht

  • DNS
  • E-Mail (STMP, POP, IMAP etc.)
  • Web (HTTP, Web2.0, etc.)

Sicherheit

  • Geheimhaltung, Authentifizierung, Integrität
Literatur

Tanenbaum A. S., Computernetzwerke, 4. Auflage, München, Pearson Studium, 2003
Stevens Richard W., TCP/IP, Reading, Mass. [u.a.], Addison-Wesley, 2005
Sikora, A., Technische Grundlagen der Rechnerkommunikation: Internet-Protokolle und Anwendungen, München, Wien, Hanser, 2003

SW-Engineering für Embedded Systems

Art Vorlesung
Nr. EMI214
SWS 2.0
Lerninhalt

- Phasen der Softwareentwicklung

- Abstraktion und Hierarchie

- Echtzeit & Zuverlässigkeit
--- Programmiertechniken
--- Speichermanagement
--- Echtzeitbetriebssysteme

- Software

- Entwicklungsprozesse
--- Sequentielle Vorgehensmodelle
--- Iterative Vorgehensmodelle

- Entwurf
--- Strukturierter und modulare Entwurf
--- Modellbasierter Entwurf

- Implementierung
--- Werkzeuge
--- Anforderungsanalyse
--- Software-Qualitätssicherung
--- Dokumentation

Literatur

Balzert, H., Lehrbuch der Software-Technik, Band 1, 3. Auflage, Heidelberg, Spektrum, 2009

Sommerville, I., Software Engineering, 9. Auflage, München, Pearson Studium, 2012                                                     

Berns K., Schürmann B., Trapp M., Eingebettete Systeme: Systemgrundlagen und Entwicklung eingebetteter Software, Wiesbaden, Vieweg+Teubner, 2010

Schellong H., Moderne C-Programmierung: Kompendium und Referenz, Heidelberg, Springer, 2005

Korff, A., Modellierung von eingebetteten Systemen mit UML und SysML, Heidelberg, Spektrum, 2008

Automatisierungssysteme

Lehrform Vorlesung
Lernziele / Kompetenzen

Nach erfolgreichem Abschluss des Moduls

  • kennen die Studeirenden den grundsätzlichen Aufbau und die Funktionsweise von Automatisierungssystemen sowie deren wichtigste Anwendungsgebiete.
  • sind die Studierenden in der Lage grundsätzliche Arten industrieller Sensoren und Aktoren zu unterscheiden (stetig, nicht stetig, binär, analog)
  • kennen die Studierenden die unterschiedlichen Arten von Steuerungen und sind in der Lage selbstständig Verknüpfungsfunktionen, Verknüpfungssteuerungen und Ablaufsteuerungen zu entwerfen und gemäß des Programmierstandards DIN EN 61131-3 zu implementieren.
  • kenne die Studierenden Aufbau und Funktionsweise von Speicherprogrammierbaren Steuerungen und Prozessleitsystemen sowie deren Anwendungsgebiete und Realisierungsformen.
  • verfügen die Studierenden über grundlegendes Wissen im Bereich intelligenter Punkt-zu-Punkt-Verbindungen (HART-Protokoll und IO-Link), klassischer industrieller Feldbusse (insbesondere AS-Interface und Profibus) sowie über ethernet-basierte Netzwerke und Feldbusse (Ethenet TCP/IP, EtherCAT, Profinet, SercosIII).
  • kennen die Studierenden Kinematiken und Funktionsweise gängiger Industrieroboter (Portalroboter, Gelenkarmroboter, SCARA-Roboter) und sind in der Lage den prinzipiellen Aufbau von Robotersteuerungen zu beschreiben.
Dauer 1
SWS 6.0
Aufwand
Lehrveranstaltung 90 h
Selbststudium / Gruppenarbeit: 90 h
Workload 180 h
ECTS 6.0
Leistungspunkte Noten

Klausur K 90, Laborarbeit

Modulverantwortlicher

Prof. Dr.-Ing. Jörg Fischer

Empf. Semester 6
Haeufigkeit jedes Jahr (WS)
Veranstaltungen

Labor Automatisierungssysteme

Art Labor
Nr. EMI252
SWS 2.0
Lerninhalt

In den Laborübungen lernen die Studenten am Beispiel dier SIMATIC S7-1500 und S7-300 wie speicherprogrammierbare Steuerungen bedient und programmiert werden. Als Beispielanwendungen kommen dabei wahlweise ein Fabrikmodell mit verschiedenen Bearbeitungsstationen, ein Festoportalroboter sowie eine Rundtakttischapplikation zum Einsatz. Es werden u.a. folgende Themen behandelt:

  • Entwurf und Implementierung von Verknüpfungsfunktionen, Verknüpfungssteuerungen und Ablaufsteuerungen .
  • die Programmiersprachen Funktionsbausteinsprache(FUP), Ablaufsprache (GRAPH7), Strukturierten Text (SCL) sowie in geringerem Umfang Kontaktplan (KOP) und Anweisungsliste (AWL)
  • Umgang mit Programmiersystemen anhand der Software TIA-Protal von Siemens
  • Entwurf und Programmierung graphischer Bedienoberflächen und Integration in ein Automatisierungssystem
  • Analogwertverarbeitung mit Automatisierungsrechnern
Literatur

 

Ausführliche Laboranleitungen zu den Versuchen

Automatisierungssysteme

Art Vorlesung
Nr. EMI251
SWS 4.0
Lerninhalt
  • Entwicklung der Automatisiserungtechnik
  • Produktionsprozesse
  • Aufgaben der Automatisierungstechnik
  • Automatisierungsstrukturen
  • Rechnersysteme der Automatisierungstechnik: SPS, PLS, PR, LON, IMC
  • Systeme der Fertigungsautomation: CNC, Roboter, Transportsysteme
  • Serielle Schnittstellen
  • Parallele Buss
  • Feldbusse Interbus-S, CAN, Profibus, ASI
  • Software MC Step5, Step7, IEC 1131-3, Echtzeitbetriebssysteme
Literatur

Berger, H., Automatisieren mit Step 7 in AWL und SCL, Erlangen, München, Publicis-MCD-Verlag, 1999

Schnell G., Wiedemann B., Bussysteme in der Automatisierungstechnik, 7. Auflage, Wiesbaden, Vieweg + Teubner, 2008

Langmann, R., Taschenbuch der Automatisierung, 2. Auflage, München, Fachbuchverlag Leipzig, 2010

Bachelorarbeit

Empfohlene Vorkenntnisse

Kenntnis und Anwendbarkeit der Studieninhalte, 150 Creditpunkte
inklusive Betriebspraktikum (zwingend)

Lehrform Wissenschaftl. Arbeit/Sem
Lernziele / Kompetenzen

Ein erstes Lernziel ist, dass die im Studium erworbenen Kenntnisse und Fähigkeiten in einem Projekt aus dem  Bereich der Mechatronik methodisch und im Zusammenhang eingesetzt werden können.
Die Kompetenz, ein Problem innerhalb einer vorgegebenen Frist selbstständig strukturieren, nach wissenschaftlichen Methoden systematisch bearbeiten und schließlich transparent dokumentieren zu können, qualifiziert die Absolventen  für einen Eintritt in die Community der Ingenieure.
Wesentlicher Bestandteil ist die Kompetenz zur zielgruppengerechten Präsentation des Projektes und der in der Arbeit erzielten Resultate in verschiedenen Präsentationsformen.
Mit dem erfolgreichen Abschluss des Moduls ist damit auch ein indirektes Lernziel erreicht: die Studierenden mit dem erfolgreichen Abschluss "ihres" Projektes ein zur Ausübung des Ingenieurberufes hinreichendes Selbstverständnis mit auf den Weg zu geben.

Dauer 1
SWS 2.0
Aufwand
Lehrveranstaltung 30 h
Selbststudium / Gruppenarbeit: 390 h
Workload 420 h
ECTS 14.0
Voraussetzungen für die Vergabe von LP

Abschlussarbeit und Kolloquium

Leistungspunkte Noten

14 Creditpunkte

Modulverantwortlicher

Prof. Dr.-Ing. Stefan Hensel

Empf. Semester 7
Haeufigkeit jedes Semester
Verwendbarkeit

Bachelor MK-plus, Hauptstudium

Veranstaltungen

Bachelor-Thesis

Art Wissenschaftl. Arbeit
Nr. EMI1303
SWS
Lerninhalt

Individuelle Themenstellung wird in vorgegebener Zeit selbständig bearbeitet und dokumentiert.

Literatur

Wird von den Betreuern vorgegeben

Kolloquium

Art Wissenschaftl. Arbeit
Nr. EMI1304
SWS 2.0
Lerninhalt

In einer Einführungsveranstaltung mit Präsenzpflicht werden die Grundlagen wissenschaftlichen Arbeitens reflektiert sowie verbindliche Richtlinien für die schriftliche Dokumentation sowie für die öffentliche Präsentation vorgegeben.

Am Ende der Bearbeitungszeit der Bachelor-Thesis folgt ein öffentlicher Fachvortrag im Umfang von 15-20 Minuten über die eigene Arbeit und deren Randbedingungen, sowie die Präsentation eines Posters hierzu. Das Poster soll so gestaltet sein, dass es die Hochschulöffentlichkeit zur Teilnahme am Vortrag motiviert.

 

Literatur

Wird von den Betreuern vorgegeben

Bedingungen und Strukturen beruflichen Lernens

Empfohlene Vorkenntnisse

keine

Lehrform Vorlesung/Seminar
Lernziele / Kompetenzen

Die Alsolventinnen und Absolventen

  • können wissenschaftliche Texte verstehen und die wesentlichen Inhalte wiedergeben;
  • können die Fragestellungen, Vorgehensweisen und Ergebnisse wissenschaftlicher Studien verstehen, wiedergeben, einordnen und beurteilen;
  • kennen verschiedene Quellen berufspädagogischer Literatur und können zu gegebenen berufspädagogischen Themen und Fragestellungen entsprechende Literatur recherchieren;
  • sind in der Lage verschiedene Quellen wissenschaftlicher Literatur richtig anzugeben und zu zitieren;
  • sind in der Lage wissenschaftliche Sachverhalte strukturiert und in angemessener Weise im Rahmen einer schriftlichen Ausarbeitung darzustellen;
  • können Präsentationen zur Darstellung und Erläuterung von wissenschaftlichen Erkenntnissen/Forschungsergebnissen erstellen und diese wissenschaftlichen Erkenntnisse/Forschungsergebnisse in verständlicher Weise präsentieren:
  • kennen ausgewählte berufspädagogische Forschungsprojekte sowie deren Fragestellungen, wissenschaftliche Vorgehensweisen und Forschungsergebnisse;
  • verfügen über grundlegende Kentnisse von Methoden der bildungswissenschaftlichen Forschung und können Forschungsergebnisse auf die pädagogische Praxis beziehen;
  • kennen grundlegende Modelle des Lehrens und Lernens, wissen um die Bedeutung motivationaler, emotionaler, kognitiver, individueller und soziokultureller Lernvoraussetzungen und können sie auf pädagogische Situationen übertragen;
  • kennen relevante Theorien der Entwicklung unter besonderer Berücksichtigung von Geschlecht, Kultur und sozialem Milieu;
  • reflektieren Chancen und Probleme der Entwicklungs-, Lern- und Leistungsdiagnostik, kennen Konstruktionsprinzipien von Instrumenten zur Leistungsmessung und Bezugsnormen von Leistungsbeurteilungen und wissen um deren Auswirkungen auf Lern- und Motivationsprozesse;
  • kennen die Gütekriterien der Leistungsmessung und können diese bei der Vorbereitung und Durchführung eigner schriftlicher und mündlicher Leistungsmessungen berücksichtigen;
  • kennen die unterschiedlichen Formen der Zwischen- und Abschlußprüfungen im dualen System der Berufsbildung und sind mit den Problemen und Lösungsansätzen im Kontext der Prüfung beruflicher Handlungskompetenz vertraut;
  • sind mit den Formen betrieblicher Beurteilungen und Beurteilungsverfahren vertraut und können Arbeits- und Ausbildungszeugnisse interpretieren und verfassen;
  • kennen die Strukturen des allgemein bildenden und des beruflichen Bildungssystems und können die Stärken und die Schwächen der Systeme auch vor dem Hintergrund aktueller gesellschaftlicher und politischer Diskussionen beurteilen;
  • sind mit den rechtlichen Grundlagen der beruflichen Bildung vertraut und können auf der Basis dieser Kenntnisse sowie der Kenntnisse über die Bedingungen und Strukturen des Bildungssystems Bildungsgangempfehlungen aussprechen;
  • können die Funktionen des Berufskonzepts im Kontext beruflicher Ausbildung wie auch beruflicher Tätigkeit einschätzen und beurteilen.
Dauer 1
SWS 8.0
Aufwand
Lehrveranstaltung 120 h
Selbststudium / Gruppenarbeit: 180 h
Workload 300 h
ECTS 10.0
Voraussetzungen für die Vergabe von LP

regelmäßige Teilnahme & Modulprüfung "Bedingungen und Strukturen beruflichenLernens" (RE/HA/KO)

Leistungspunkte Noten

10 Creditpunkte

Modulverantwortlicher

Prof. Dr. Thomas Diehl

Max. Teilnehmer 36
Empf. Semester 4
Haeufigkeit jedes Jahr (SS)
Verwendbarkeit

Bachelorstudiengang Mechatronik-plus (MK-plus)

Bachelorstudiengang Elektrotechnik/Informationstechnik-plus (EI-plus)

Bachelorstudiengang Medientechnik/Wirtschaft-plus (MW-plus)

Bachelorstudiengang Wirtschaftsinformatik-plus (WIN-plus)

Bachelorstudiengang Elektrische Energietechnik/Physik plus (EP-plus)

Veranstaltungen

Grundlagen wissenschaftlichen Arbeitens in der Berufspädagogik

Art Seminar
Nr. EW1205
SWS 2.0
Lerninhalt
  • Grundlagen wissenschaftlichen Arbeitens
  • Verstehen wissenschaftlicher Texte
  • Fragestellungen, Vorgehensweisen und Ergebnisse wissenschaftlicher Studien
  • Quellen berufspädagogischer Literatur
  • Plagiate und freiwillige Plagiatskontrolle
  • Dokumentenstruktur wissenschaftlicher Texte
  • Erstellen von Präsentationen wissenschaftlicher Sachverhalte
  • Vorträge zur Darstellung wissenschaftlicher Sachverhalte
  • aktuelle berufspädagogische Forschungsprojekte
Literatur

Aktuelle Fachliteratur wird in der Veranstaltung bekannt gegeben oder zur Verfügung gestellt.

Konzepte und Systeme beruflicher Bildung

Art Seminar
Nr. EW1206
SWS 2.0
Lerninhalt
  • Strukturen des Bildungssystems der Bundesrepublik Deutschland, aktuelle Entwicklungen und Kritikpunkte
  • Strukturen des beruflichen Bildungssystems der Bundesrepublik Deutschland, aktuelle Entwicklungen und Kritikpunkte
  • organisatorische Strukturen und rechtliche Grundlagen des dualen Systems der beruflichen Bildung, Berufsbildungsgesetz und einschlägige Regelungen der Handwerksordnung
  • Berufsbegriff, Funktionen des Berufs, Arbeits- und Ausbildungsmarkt
  • System der beruflichen Schulen: Strukturen in der Bundesrepublik und speziell in Baden-Württemberg
  • berufliche Bildung außerhalb des dualen Systems
  • berufliche Fort- und Weiterbildung
  • Berufsberatung, Berufswahl
Literatur

Aktuelle Fachliteratur wird in der Veranstaltung bekannt gegeben oder zur Verfügung gestellt.

Diagnostik und Evaluation beruflicher Lernprozesse und Lernergebnisse

Art Seminar
Nr. EW1208
SWS 2.0
Lerninhalt
  • Motivation und Leistung
  • Gütekritierien der Leistungsmessung, Bezugsnormen der Leistungsbeurteilung
  • wahrnehmungspsychologische Probleme der Leistungsmessung
  • Fehlerquellen bei der Leistungsmessung und Leistungsbeurteilung
  • Leistungsmessungen und -beurteilungen im schulischen und betrieblichen Kontext
  • Leistungsmessungen im offenen/handlungsorientierten Unterricht
  • Entwicklung, Durchführung und Auswertung einer Klausur unter Berücksichtigung der Gütekriterien der Leistungsmessung
  • Prüfungen im Rahmen der dualen Berufsausbildung
  • betriebliche Beurteilungen und Beurteilungsverfahren, Arbeits- und Ausbildungszeugnisse
Literatur

Aktuelle Fachliteratur wird in der Veranstaltung bekannt gegeben oder zur Verfügung gestellt.

Grundlagen der Psychologie

Art Vorlesung
Nr. EW1207
SWS 2.0
Lerninhalt
  • Grundlagen des Lehrens und Lernens (z. B. Theorien zum Erwerb und der Repräsentation von Wissen und Fertigkeiten)
  • Grundlagen der Entwicklung (z. B. die Entwicklung kognitiver Strukturen im Kindes- und Jugendalter nach Piaget)
  • Grundlagen der Lernmotivation
  • Grundlagen des sozialen Lernens
Literatur

Woolfolk, A., Pädagogische Psychologie, München, Boston, Pearson Studium, 2008

Betriebliche Organisation

Empfohlene Vorkenntnisse

allgemeiner Studienfortschritt des 5. Semesters

Lehrform Vorlesung/Seminar
Lernziele / Kompetenzen

Dieses Modul hat ein klares übergeordnetes Lernziel:
Bereitstellung von theoretischem Wissen und Verknüpfung desselben mit dem Betriebspraktikum, um dieses als integralen Teil des Studiums in den Studienablauf einzubetten. Die Studierenden erwerben damit die Kompetenz, die betrieblichen Abläufen zugrunde liegenden Strukturen zu erkennen und vor diesem Hintergrund ihr eigenes Handeln im Betrieb reflektieren zu können.

Herzu gehören im einzelnen eine Vermittlung einer breiten betriebswirtschaftlichen Wissensbasis, um betriebliche Probleme in ihrem spezifisch ökonomischen Wesen zu begreifen und ein Kennen lernen der vielfältigen Beziehungen und Zusammenhänge zwischen den betrieblichen Teilbereichen.
Kommunikationsfähigkeit der Studierenden ist ein zweites Ziel, um überhaupt im betrieblichen Umfeld agieren zu können.

 

Dauer 2
SWS 6.0
Aufwand
Lehrveranstaltung 90 h
Selbststudium / Gruppenarbeit: 150 h
Workload 240 h
ECTS 6.0
Voraussetzungen für die Vergabe von LP

Referat, Klausur K60 und entsprechend Wahlpflichtfachliste

Leistungspunkte Noten

6 Creditpunkte

Modulverantwortlicher

Prof. Dr.-Ing. Stefan Hensel

Empf. Semester 5+6
Haeufigkeit jedes Jahr (WS)
Verwendbarkeit

Bachelor MK-plus Hauptstudium

Veranstaltungen

Seminar Projektmanagement

Art Seminar
Nr. E+I235
SWS 2.0
Lerninhalt

Im Rahmen des Seminars Projektmanagement wird eine praxisorientierte Einführung in die Methoden und Vorgehensweisen des modernen Projektmanagements gegeben. Das Seminar umfasst im Einzelnen folgende Inhaltspunkte:

- Projektmanagement: Definitionen, Richtlinien, Nutzen
Projektmanagement und Projekt Definitionen nach DIN;
Determinanten des Projektmanagement-Erfolgs; Das "Magische
Dreieck" des Projektmanagements.

- Projektorganisationsformen
Reine Projektorganisation, Projektkoordination, Matrix-
Organisation

- Projektlebenszyklus
- Projektdefinition
- Projektplanung : Kick-off, Erstellen eines
Projektstrukturplans (PSP); Verfahren der
Aufwandsschätzung; Termin- und Ablaufplanung (Gantt-Chart,
Meilensteinplan; Netzplantechnik), Ressourcen- und
Kostenplanung; Risikomanagement; Praxisanleitung zur
Projektplanung.
- Projektabwicklung/ -controlling : Projektabwicklung,
Qualitäts- und Config.-Management); Techniken zur Erfassung
zukunftbezogener IST-Daten; Datenauswertung (Soll-Ist
Vergleich; Earned-Value Analyse(EVA); Meilenstein Trend
Analyse (MTA)); Definieren von Steuerungsmaßnahmen.
- Projektabschluss : Produktabnahme; Projektabschlußbericht
mit Abschlussanalyse;Projektabschluss-Meeting (Kick-Out);
Feedback zum Projekt.

- Kosten des Projektmanagements

- Einführung in MS Projects - praktische Übung im Team

- Arbeitstechniken zur Unterstützung von Projektmanagement:
Kreativitätstechniken; Problemlösungstechniken;
Kommunikationstechniken; Verhalten und Steuern von
Besprechungen (Videopräsentation).

- Abschlussdiskussion - Feedback der Seminarteilnehmer

 

Literatur

Burghardt, M., Einführung in Projektmanagement, 4. Auflage, Erlangen, Publicis MCD Verlag, 2002

Haynes, M. E., Projektmanagement, 3. Auflage, Menlo Park, Calif., Crisp Learning Verlag, 2002

Wischnewski, E., Projektmanagement auf einen Blick, Braunschweig, Wiesbaden, Vieweg, 1993

Kommunikation und Interaktion in Unternehmen

Art Seminar
Nr. EMI323
SWS 2.0
Lerninhalt
  • Wahrnehmung als Grundlage der Kommunikation
  • Nonverbale und verbale Kommunikation, Ebenen der Interaktion
  • Selbstbild und Fremdbild: die Wirkung des eigenen Verhaltens kennenlernen
  • Einführung in die Transaktionsanalyse
  • Übungen zur Transaktionsanalyse: Analyse des individuellenGesprächsverhalten, erkennen und verstehen der Verhaltensweisen anderer
  • Charakteristisches Kommunikationsverhalten: Das Struktogramm
  • Konkrete Gesprächsstrategien: Ursachen und Wirkungen
  • Anwendung der Kommunikationsstrategien in schwierigen Gesprächssituationen
  • Erarbeiten und praktische Erprobung von Konfliktlösungsstrategien und Fragetechniken
  • Feedback auf das eigene Redeverhalten
  • Übungen für ein Assessment-Center
Literatur

Schulz von Thun, Miteinander reden, Band 1-3, Rowohlt, 1981

Betriebswirtschaftslehre

Art Vorlesung
Nr. EMI324
SWS 2.0
Lerninhalt
  • Grundlagen
  • Unternehmensführung/Management
  • Informationswirtschaft (Externes und internes Rechnungswesen)
  • Finanzierung und Investition
  • Personalwirtschaft
  • Materialwirtschaft
  • Produktionswirtschaft
  • Absatzwirtschaft/Marketing
Literatur

Vahs, D., Schäfer-Kunz, J., Einführung in die Betriebwirtschaftslehre, 5. Auflage, Stuttgart, Schäffer-Poeschel-Verlag, 2007

Betriebliche Praxis

Empfohlene Vorkenntnisse

Frühestens im 5. Semester. Nach drei Semestern müssen mindestens 75 Creditpunkte oder zum Ende des dem Praktischen Studiensemester unmittelbar vorangehenden Semesters mindestens
90 Creditpunkte erbracht sein. Eine den Vorschriften entsprechende Praxisstelle muss zur Genehmigung vorgelegt werden.

Lehrform Praktikum
Lernziele / Kompetenzen

Der Teilnehmer verankert und erweitert das bereits Erlernte durch praktische Erfahrung, lernt die Bedeutung der Teamarbeit kennen, wendet Softskills an und erweitert sie.

Dauer 1
Aufwand
Lehrveranstaltung 95 Präzenstage
Selbststudium / Gruppenarbeit: 720 h
Workload 720 h
ECTS 24.0
Voraussetzungen für die Vergabe von LP

Praxisberichte, Zeugnis der Praxisstelle

Leistungspunkte Noten

24 Creditpunkte

Modulverantwortlicher

Prof. Dr.-Ing. Werner Reich

Empf. Semester 5
Haeufigkeit jedes Semester
Verwendbarkeit

Bachelor MK-plus, Hauptstudium

Veranstaltungen

Betriebspraktikum

Art Praktikum
Nr. EMI322
SWS
Lerninhalt

Das Ziel des Betriebspraktikums ist, durch Tätigkeiten in einschlägigen Betrieben das gewählte Berufsfeld soweit kennen zu lernen, dass eine sinnvolle Schwerpunktbildung und Auswahl von Fächern nach eigener Neigung für die Studierenden möglich wird.

Literatur

Wird im Praktikumsbetrieb bekannt gegeben

Elektrische Antriebe I

Empfohlene Vorkenntnisse

komplettes Grundstudium

Lehrform Vorlesung
Lernziele / Kompetenzen

Die Teilnehmer lernen die Funktionsweise der wichtigsten leistungselektronischen Stellglieder zum Betreiben elektrischer Maschinen sowie die grundlegenden Eigenschaften einiger bedeutender elektrischer Maschinen selbst kennen. Die spezifischen Eigenschaften der den leistungselektronischen Stellgliedern zugrundeliegenden Leistungshalbleiterbauelemente werden überblickt. Die Teilnehmer eignen sich außerdem die Fähigkeit zur Beurteilung, welche Applikationen mit welchen Antriebskomponenten auszurüsten sind und mit welchen Schwierigkeiten dabei zu rechnen ist, an.

Dauer 1
SWS 6.0
Aufwand
Lehrveranstaltung 90 h
Selbststudium / Gruppenarbeit: 90 h
Workload 180 h
ECTS 6.0
Voraussetzungen für die Vergabe von LP

Klausur K120

Leistungspunkte Noten

6 Creditpunkte

Modulverantwortlicher

Prof. Dr.-Ing. habil. Uwe Nuß

Empf. Semester 4
Haeufigkeit jedes Jahr (WS)
Verwendbarkeit

Bachelor MK, Hauptstudium
Bachelor MK-plus, Hauptstudium
Bachelor EI, Hauptstudium
Bachelor EI-plus, Hauptstudium
Bachelor EI-3nat, Hauptstudium

Veranstaltungen

Leistungselektronik

Art Vorlesung
Nr. EMI256
SWS 4.0
Lerninhalt
  • Aufgaben der Leistungselektronik
  • Bauelemente der Leistungselektronik
  • Wechselstrom- und Drehstromsteller
  • Netzgeführte Stromrichter
  • Selbstgeführte Stromrichter
  • Umrichter
  • Verfahren zur Ansteuerung von Stromrichtern
Literatur

Jäger, R., Stein, E., Leistungselektronik, VDE-Verlag, Berlin, Offenbach, 2011
Schröder, D., Leistungselektronische Schaltungen, 2. Auflage, Berlin, Heidelberg, Springer-Verlag, 2008
Specovius, J., Grundkurs Leistungselektronik, 2. Auflage, Wiesbaden, Vieweg Verlag, 2008

Grundlagen elektrischer Antriebe

Art Vorlesung
Nr. EMI257
SWS 2.0
Lerninhalt

- Grundsätzlicher Aufbau von Antriebssystemen:
Lasten, Getriebe, Motor, Umformer, Netz
- Grundlagen der Antriebstechnik:
Mechanische Größen, Energieflussbetrachtung, Drehmomenterzeugung, Verluste, Wirkungsgrad
Nennwerte von Elektromotoren, Drehfeld
- Gleichstrommaschinen:
Aufbau, Wirkungsweise, Grundgleichungen, Betriebsverhalten, DC-Motoren mit Permanentmagneterregung
DC-Reihenschlussmotor, Universalmotor
- Synchronmaschinen:
Aufbau, Wirkungsweise, Grundgleichungen, Betriebsverhalten, Einphasenbetrieb, Vergleich Permanent-/ Reluktanz-/Hysterese-Läufer
- Schrittmotoren:
Aufbau u. Schaltung, Stromversorgung und Ansteuerung, Betriebsverhalten, Anwendungen
- Elektronikmotoren:
Aufbau, Ansteuerung und Anwendung
- Linearmotoren für kleine Leistungen

Literatur

Jäger, R., Stein, E., Leistungselektronik, Berlin, Offenbach, VDE-Verlag, 2011
Specovius, J., Grundkurs Leistungselektronik, 8. Auflage, Wiesbaden, Vieweg Verlag, 2017
Schröder, D., Elektrische Antriebe - Regelung von Antriebssystemen, 4. Auflage, Berlin, Heidelberg, Springer-Verlag, 2015
Fischer, R., Elektrische Maschinen, 16. Auflage, München, Wien, Hanser Verlag, 2017

Elektrische Antriebe II

Empfohlene Vorkenntnisse

Elektrische Antiebe I, Grundkenntnisse im Bereich der Leistungselektronik und in der Funktionsweise elektrischer Maschinen

Lehrform Vorlesung/Labor
Lernziele / Kompetenzen

Die Studierenden lernen die Wirkungsweise der am weitesten verbreiteten elektrischen Antriebe kennen. Sie beherrschen am Ende die wichtigsten formelmäßigen Zusammenhänge zwischen Strömen, Spannungen, Drehmoment und Drehzahl der betrachteten Antriebe und können die Antriebe grob auslegen.

Die Teilnehmer verschaffen sich außerdem einen Überblick über die feldorientierte Regelung elektrischer Antriebe. Im Labor machen sich die Teilnehmer mit dem Umgang mit verschiedenen elektrischen Antrieben und mit ihrem Betriebsverhalten, insbesondere bei Stromrichterspeisung, vertraut.

 

Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 5.0
Voraussetzungen für die Vergabe von LP

Klausur K90 und Laborarbeit

Leistungspunkte Noten

5 Creditpunkte

Modulverantwortlicher

Prof. Dr.-Ing. habil. Uwe Nuß

Empf. Semester 6
Haeufigkeit jedes Jahr (SS)
Verwendbarkeit

Bachelor MK, Hauptstudium

Bachelor MK-plus, Hauptstudium

Veranstaltungen

Industrielle Antriebe

Art Vorlesung
Nr. EMI258
SWS 2.0
Lerninhalt

- Lastkennlinien und Bewegungsgleichungen elektrischer Antriebe
- Sensoren für elektrische Antriebe
- Wicklungen von Drehfeldmaschinen
- Raumzeigertheorie
- Stationäres mathematisches Modell und Betriebskennlinien der Asynchronmaschine im Grunddrehzahl- und Feldschwächbereich
- Ausführungsformen und Regelungsstruktur stromrichtergespeister Antriebe mit Asynchronmaschinen
- Verfeinertes stationäres mathematisches Modell der permanentmagneterregten Synchronmaschine
- Regelungsstruktur stromrichtergespeister Antriebe mit permanentmagneterregten Synchronmaschinen

Literatur

Meyer, M., Elektrische Antriebstechnik, Bände 1 und 2., Berlin, Heidelberg, Springer-Verlag, 1985

Schröder, D., Elektrische Antriebe - Regelung von Antriebssystemen, 4. Auflage, Berlin, Heidelberg, Springer-Verlag, 2001

Fischer, R., Elektrische Maschinen, 16. Auflage, München, Wien, Hanser Verlag, 2013

Labor Elektrische Antriebe und Leistungselektronik

Art Labor
Nr. EMI259
SWS 2.0
Lerninhalt

Untersuchung des Betriebsverhaltens von Gleichstrom-, Asynchron-und permanentmagneterregten Synchronmaschinen sowie von Schrittmotoren
- Messtechnische Ermittlung von Maschinenparametern
- Ausmessung von Bauelementen der Leistungselektronik
- Betrieb elektrischer Maschinen mit Thyristor- und Transistorstellgliedern
- Inbetriebnahme von Regelkreisen bei elektrischen Antrieben

Literatur

Jäger, R., Stein, E., Leistungselektronik, Berlin, Offenbach, VDE-Verlag, 2011
Schröder, D., Leistungselektronische Schaltungen, 3. Auflage, Berlin, Heidelberg, Springer-Verlag, 2012
Specovius, J., Grundkurs Leistungselektronik, 8. Auflage, Wiesbaden, Vieweg Verlag, 2017
Schröder, D., Elektrische Antriebe - Regelung von Antriebssystemen, 4. Auflage, Berlin, Heidelberg, Springer-Verlag, 2015
Fischer, R., Elektrische Maschinen, 16. Auflage, München, Hanser Verlag, 2013
Meyer, M., Elektrische Antriebstechnik, Bände 1 und 2, Berlin, Heidelberg, Springer-Verlag, 1985

Embedded Systems

Empfohlene Vorkenntnisse

Ingenieur-Informatik

Lehrform Vorlesung/Labor
Lernziele / Kompetenzen

Die Studierenden beherrschen den Umgang mit Mikroprozessoren und Mikrocontrollern, verstehen den Einsatz von Assemblerprogrammierung, können Assembler in Hochsprachen einbinden und gehen strukturiert vor. Sie können eigene Embedded Systems aufbauen.

Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 5.0
Voraussetzungen für die Vergabe von LP

Klausur K90, Laborarbeit

Leistungspunkte Noten

5 Creditpunkte

Modulverantwortlicher

Prof. Dr.-Ing. Daniel Fischer

Empf. Semester 3
Haeufigkeit jedes Jahr (WS)
Verwendbarkeit

Bachelor MK, Hauptstudium
Bachelor MK-plus, Hauptstudium
Bachelor EI, Hauptstudium
Bachelor EI-plus, Hauptstudium
Bachelor EI-3nat, Hauptstudium

Veranstaltungen

Embedded Systems

Art Vorlesung
Nr. EMI231
SWS 2.0
Lerninhalt

Befehlsstrukturen und –verarbeitung in Mikroprozessoren Adressierung der 80x86-Prozessoren Assembler-Source-Code erstellen und umsetzen in Objectcode und ausführbare Dateien Verbindung zum Betriebssystem durch Interrupts Zyklische und verzweigte Programme Flags Stackoperationen Logische und arithmetische Befehle Makros und Prozeduren Periphere Anbindung mit IN und OUT Textausgaben Adressierungsarten Aufbau von Mikrocontrollern Register, RAM, EEPROM, Flash Ports und Peripherie Systementwicklung Tools zum effektiven Arbeiten mit Embedded Systems

 

Literatur

Uhlenhoff, A., Mikrocontroller Werkzeugkasten HC12, Aachen, Shaker Verlag, 2002

Heiß, P., PC Assemblerkurs, Heise-Verlag, 1994

Labor Embedded Systems

Art Labor
Nr. EMI232
SWS 2.0
Lerninhalt
  • Vorbereitende Arbeiten
  • Einrichten einer IDE auf dem PC
  • Anwendung der in der VL erlernten Befehle
  • Ausführbare Dateien direkt erstellen, also ohne Übersetzungshilfen
  • Untersuchung der EXE-Dateien in Hexadezimaldarstellung
  • Echtzeitanwendungen
  • Textverarbeitung Embedded Systems
  • Vollständiger Aufbau eines eigenen Embedded Systems (das vom Studierenden käuflich erworben werden kann)
  • Aufbringen eines Bootloaders und eines Betriebssystems
  • Verbinden mit einem PC und Datenkommunikation einrichten
  • Analoge und digitale Schnittstellen in Programme einbinden
  • Zusatzhardware integrieren
  • Stand-alone-System aufbauen
  • Tools kennen lernen

 

Literatur

Laborumdrucke, Hochschule Offenburg, 2019

Fachdidaktik technischer Fachrichtungen

Empfohlene Vorkenntnisse

keine

Lehrform Seminar/Vorlesung/Praxis
Lernziele / Kompetenzen

Die Absolventinnen und Absolventen

  • können zwischen Erziehungswissenschaft, Pädagogik, Didaktik und Fachdidaktik unterscheiden sowie den berufspädagogischen und fachdidaktischen Spezialdisziplinen Untersuchungsgegenstände und Untersuchungsthemen zuordnen;
  • entwickeln die Fähigkeit, die Gegenstandsbereiche und das Aufgabenspektrum der Fachdidaktik zu differenzieren und kennen die Aufgaben der Fachdidaktik als Unterrichtstheorie;
  • gewinnen Einsichten in die Grundprobleme didaktisch-methodischer Planungen;
  • werden befähigt, auf der Grundlage der Kenntnis didaktischer Theorien und Modelle, eigenen Unterricht zu planen, durchzuführen, zu analysieren und zu reflektieren.

 

Im Rahmen der Schulpraxis/Schulpraktischen Phase

  • vertiefen die Studierenden ihr Wissen über das berufliche Schulwesen;
  • lernen ausgewählte Aspekte der Bildungsgangplanung sowie der Schulorganisation kennen;
  • nehmen im Rahmen von Hospitationen am Unterricht in verschiedenen Schulformen teil;
  • sammeln erste eigene Unterrichtserfahrungen.

 

Dauer 2
SWS 7.0
Aufwand
Lehrveranstaltung 105 h
Selbststudium / Gruppenarbeit: 195 h
Workload 300 h
ECTS 10.0
Voraussetzungen für die Vergabe von LP

regelmäßige Teilnahme & Modulprüfung "Fachdidaktik technischer Fachrichtungen" (K120)

"Schulpraxis I" muss "m. E." attestiert sein und ein Bericht vorgelegt werden

Leistungspunkte Noten

10 Creditpunkte

Modulverantwortlicher

Prof. Dr. Andy Richter

Max. Teilnehmer 36
Empf. Semester 6-7
Haeufigkeit jedes Jahr (SS)
Verwendbarkeit

Bachelorstudiengang Mechatronik-plus (MK-plus)

Bachelorstudiengang Elektrotechnik/Informationstechnik-plus (EI-plus)

Bachelorstudiengang Medientechnik/Wirtschaft-plus (MW-plus)

Bachelorstudiengang Wirtschaftsinformatik-plus (WIN-plus)

Bachelorstudiengang Elektrische Energietechnik/Physik plus (EP-plus)

Veranstaltungen

Grundlagen der Fachdidaktik technischer Fachrichtungen

Art Vorlesung
Nr. EW1209
SWS 2.0
Lerninhalt
  • wissenschaftstheoretische Grundlagen; zentrale Begriffe
  • allgemeine Didaktik, Entwicklung und Grundpositionen
  • berufliches Lernen im Wandel
  • berufliches Lernen an verschieden Lernorten
  • Leistungsmessung und -bewertung in beruflichen Bildungsgängen
Literatur

Aktuelle Fachliteratur wird in der Veranstaltung bekannt gegeben oder zur Verfügung gestellt.

Begleitseminar zur Fachdidaktik technischer Fachrichtungen

Art Übung
Nr. EW1210
SWS 2.0
Lerninhalt

Die Inhalte der Vorlesung „Grundlagen der Fachdidaktik technischer Fachrichtungen“ werden in seminaristischer Form nochmals aufgearbeitet und in Bezug auf die jeweiligen Berufsfelder differenziert thematisiert.

Literatur

Aktuelle Fachliteratur wird in der Veranstaltung bekannt gegeben oder zur Verfügung gestellt.

Unterrichtsanalyse, -planung und -gestaltung in beruflichen Bildungsgängen

Art Seminar
Nr. EW1211
SWS 2.0
Lerninhalt
  • Analyse von Ordnungsmitteln
  • Erstellung von Planungsinstrumenten für Lehr-/Lernsituationen unter Berücksichtigung der Anforderungen des Lernfeldkonzepts
  • Entwicklung eigener Unterrichtssequenzen
  • Entwicklung von Instrumenten zur Leistungsbewertung
Literatur

Aktuelle Fachliteratur wird in der Veranstaltung bekannt gegeben oder zur Verfügung gestellt.

Schulpraxis II

Art Praktikum
Nr. EW1212
SWS 1.0
Lerninhalt
  • Planung und Durchführung von Hospitationen
  • Grenzen der Beobachtbarkeit
  • Dokumentation und Auswertung von Hospitationen
  • Planung, Durchführung und Reflexion eigenen Unterrichts

Grundlagen der Erziehungswissenschaften und der Didaktik

Empfohlene Vorkenntnisse

keine

Lehrform Seminar/Vorlesung/Praxis
Lernziele / Kompetenzen

Die Absolventinnen und Absolventen

  • können erziehungswissenschaftliche Fachrichtungen und Konzeptionen sowie pädagogische Lehren in die Struktur der Erziehungswissenschaften einordnen;
  • sind mit den Begriffen Erziehung, Sozialisation und Bildung vertraut und kennen relevante Erziehungs-, Bildungs- und Sozialisationstheorien;
  • kennen grundlegende Strategien erziehungswissenschaftlicher Forschung;
  • kennen einschlägige Theorien pädagogischer Professionalität und können die spezifischen Herausforderungen und Paradoxien pädagogischen Handelns identifizieren;
  • kennen die lerntheoretischen und handlungstheoretischen Grundlagen didaktischer Modelle und Konzepte;
  • können Lernsequenzen auf der Grundlage didaktischer Modelle vorbereiten, durchführen und reflektieren;
  • sind mit dem Konzept der beruflichen Handlungskompetenz vertraut und können diese Kompetenz in unterschiedlichen beruflichen Praxisfeldern analysieren;
  • können Hospitationen planen, durchführen, reflektieren und auswerten.
Dauer 2
SWS 7.0
Aufwand
Lehrveranstaltung 105 h
Selbststudium / Gruppenarbeit: 195 h
Workload 300 h
ECTS 10.0
Voraussetzungen für die Vergabe von LP

regelmäßige Teilnahme & Modulprüfung für "Grundlagen der Erziehungswissenschaften und der Didaktik" (K120)

"Schulpraxis I" muss "m. E." attestiert sein und ein Bericht vorgelegt werden

Leistungspunkte Noten

10 Creditpunkte

Modulverantwortlicher

Prof. Dr. Thomas Diehl

Max. Teilnehmer 36
Empf. Semester 3-4
Haeufigkeit jedes Jahr (WS)
Verwendbarkeit

Bachelorstudiengang Mechatronik-plus (MK-plus)

Bachelorstudiengang Elektrotechnik/Informationstechnik-plus (EI-plus)

Bachelorstudiengang Medientechnik/Wirtschaft-plus (MW-plus)

Bachelorstudiengang Wirtschaftsinformatik-plus (WIN-plus)

Bachelorstudiengang Elektrische Energietechnik/Physik plus (EP-plus)

Veranstaltungen

Schulpraxis I

Art Praktikum
Nr. EW1204
SWS 1.0
Lerninhalt
  • Planung und Durchführung von Hospitationen
  • Dokumentation und Auswertung von Hospitationen
  • Planung, Durchführung und Reflexion erster eigener Unterrichtssequenzen
  • Dokumentation und Auswertung von Unterrichtssequenzen

Grundlagen der Didaktik beruflichen Lehrens und Lernens (Übung)

Art Übung
Nr. EW1203
SWS 2.0
Lerninhalt
  • Planung von Unterrichtssequenzen auf der Basis didaktischer Modelle
  • Dokumentation der geplanten Unterrichtssequenzen
  • Durchführung eigener Unterrichtssequenzen
  • Reflexion eigener Unterrichtssequenzen
  • kriteriengeleitete Beobachtung von Unterricht
  • theoriegeleitete Erkundung beruflicher Unterrichtspraxis
Literatur

Aktuelle Fachliteratur wird in der Veranstaltung bekannt gegeben oder zur Verfügung gestellt.

Grundlagen der Didaktik beruflichen Lehrens und Lernens

Art Vorlesung
Nr. EW1202
SWS 2.0
Lerninhalt
  • Grundlagen der Kommunikation
  • Didaktikbegriff
  • Lerntheorien als Grundlage didaktischer Modelle
  • Handlungstheorien als Grundlage didaktischer Modelle
  • didaktische Modelle: Die didaktische Analyse und das Perspektivenschema zur Unterrichtsvorbereitung nach Klafki
  • didaktische Modelle: Das Berliner Modell
  • lernzielorientierte Unterrichtsplanung: Lernziele, Lernzieltaxonomien
  • Entwicklung beruflicher Handlungskompetenz
  • Analyse beruflicher Handlungskompetenz in beruflichen Praxisfeldern
  • Lernfeldkonzept
  • Konzepte handlungsorientierten Unterrichts
  • Projektmethode nach Frey
  • Prüfungen in der beruflichen Bildung
  • Vorbereitung des Praktikums als theoriegeleitete Erkundung beruflicher Unterrichtspraxis
Literatur

Aktuelle Fachliteratur wird in der Veranstaltung bekannt gegeben oder zur Verfügung gestellt.

Einführung in die Erziehungswissenschaften für Berufspädagogen

Art Vorlesung
Nr. EW1201
SWS 2.0
Lerninhalt
  • Struktur der Erziehungswissenschaften
  • anthropologische Erklärungen der Erziehungsbedürftigkeit des Menschen
  • erziehungswissenschaftliche Grundbegriffe: Erziehung, Sozialiation, Bildung
  • lerntheoretische und entwicklungstheoretische Erklärungen für Sozialisationsvorgänge
  • Stufen der moralischen Entwicklung
  • berufliche Handlungskompetenz von Lehrerinnen und Lehrern
  • Grundlagen der Theorie sozialer Systeme
  • Pädagogische Professionalität
  • Theorie-Praxis-Verhältnis in der Erziehungswissenschaft
Literatur

Aktuelle Fachliteratur wird in der Veranstaltung bekannt gegeben oder zur Verfügung gestellt.

Maschinenelemente

Empfohlene Vorkenntnisse

Technische Mechanik I, II

Lehrform Vorlesung
Lernziele / Kompetenzen

Die Wirkungsweise der behandelten Maschinenelemente soll verstanden

werden und ihre Beanspruchungen sollen bekannt sein. Aufgrund dieses Wissens sollen dieMaschinenelemente dimensioniert und günstig gestaltet werden können. Die zugehörigen Festigkeitsnachweise sollen unter Beachtung einschlägiger Normen durchgeführt und dokumentiert werden können. Der Einfluss der Bauteile auf die Dynamik eines Antriebsstranges muss abgeschätzt werden können.

Dauer 1
SWS 6.0
Aufwand
Lehrveranstaltung 80 h
Selbststudium / Gruppenarbeit: 160 h
Workload 240 h
ECTS 8.0
Voraussetzungen für die Vergabe von LP

Klausur K90 und Hausarbeit

Leistungspunkte Noten

8 Creditpunkte

Modulverantwortlicher

Prof. Dr.-Ing. Claus Joseph Fleig

Empf. Semester 4
Haeufigkeit jedes Jahr (WS)
Verwendbarkeit

Bachelor MK, Hauptstudium
Bachelor MK-plus, Hauptstudium

Veranstaltungen

Maschinenelemente/Konstruktionslehre

Art Vorlesung/Übung
Nr. M+V608
SWS 4.0
Lerninhalt

A) Einführung in das Methodische Konsturieren (Ideenfindung, Konstruktionsprinzipien, Gestaltungsregeln, Klärung des Begriffs "Funktion" in der Konstruktionslehre)

B) Einführung in die Praktische Festigkeitslehre (Dauerschwingversuch, Wöhlerlinie, Dauerfestigkeitsschaubilder, Theorie des allgemeinen Verspannungszustands, Invarianten des Spannungstensors, VersagenshypothesenFestigkeitsnachweise nach DIN 743)

C) Betrachtung ausgewählter grundlegender Maschinenelememente: Z.B. Achsen, Wellen, Lager, Bewegungsschrauben, Federn. Dabei mit besonderem Blick auf Berechnungsansätze, die für weitere Maschinenelemente grundsätzliche Bedeutung habe (Dimensionierung, Funktionsnachweise, Festigkeitsnachweise)

  • Diskussion allgemeiner und übergreifender Regeln des Funktionsnachweises bei ausgewählten Maschinenelementen
  • Diskussion allgemeiner und übergreifender Regeln des Festigkeitsnachweises bei bei ausgewählten Maschinenelementen
  • Diskussion von abstrakten Modellierungsansätzen für ausgewählte Maschinenelemente für die Verwendung in Mechatronischen Simulationen

 

 

Literatur

Begleitunterlagen der Veranstaltung

Zur Ergänzung empfohlen:

Roloff, Matek, Maschinenelemente, 2003
Niemann, Winter, Höhn, Maschinenelemente, 2005
Labisch, Technisches Zeichnen, Springer Vieweg 2017
DIN 743

 

 

 

Maschinenelemente/Konstruktionslehre - Hausarbeit

Art Übung
Nr. M+V608
SWS 6.0
Lerninhalt

A) Einführung in das Methodische Konsturieren (Ideenfindung, Konstruktionsprinzipien, Gestaltungsregeln, Klärung des Begriffs "Funktion" in der Konstruktionslehre)

B) Einführung in die Praktische Festigkeitslehre (Dauerschwingversuch, Wöhlerlinie, Dauerfestigkeitsschaubilder, Theorie des allgemeinen Verspannungszustands, Invarianten des Spannungstensors, VersagenshypothesenFestigkeitsnachweise nach DIN 743)

C) Betrachtung ausgewählter grundlegender Maschinenelememente: Z.B. Achsen, Wellen, Lager, Bewegungsschrauben, Federn. Dabei mit besonderem Blick auf Berechnungsansätze, die für weitere Maschinenelemente grundsätzliche Bedeutung habe (Dimensionierung, Funktionsnachweise, Festigkeitsnachweise)

  • Diskussion allgemeiner und übergreifender Regeln des Funktionsnachweises bei ausgewählten Maschinenelementen
  • Diskussion allgemeiner und übergreifender Regeln des Festigkeitsnachweises bei bei ausgewählten Maschinenelementen
  • Diskussion von abstrakten Modellierungsansätzen für ausgewählte Maschinenelemente für die Verwendung in Mechatronischen Simulationen

 

 

 

 und Konstruktionsübung.

Literatur

Begleitunterlagen der Veranstaltung

Zur Ergänzung empfohlen:

Roloff, Matek, Maschinenelemente, 2003
Niemann, Winter, Höhn, Maschinenelemente, 2005
Labisch, Technisches Zeichnen, Springer Vieweg 2017
DIN 743

 

Mechatronik

Empfohlene Vorkenntnisse

Technische Mechanik, Elektrotechnik

Lehrform Vorlesung/Seminar
Lernziele / Kompetenzen

Die Studierenden lernen die grundlegenden Eigenschaften und Komponenten mechatronischer Systeme kennen. Sie kennen das Vorgehen für die systematische und teamorientierte Entwicklung mechatronischer Systeme. Sie verstehen den Aufbau und die Interaktion von Aktoren, Sensoren und Elementen der Steuerung und Informationsverarbeitung.

Die Studierenden lernen die grundlegenden Komponenten aus Mechanik, Elektrotechnik und Informationstechnik kennen und können diese anhand von Fallbeispielen mathematisch beschreiben.

Sie erkennen die Zusammenhänge von digitalen Entwurfs- und Entwicklungsprozessen mit dem realen System. Die Studierenden beherrschen Verfahren zur Modellierung und der Simulation einfacher Systeme und kennen eine Auswahl der hierfür einzusetzenden Modellierungswerkzeuge.

 

Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 95 Präzenstage
Selbststudium / Gruppenarbeit: 720 h
Workload 720 h
ECTS 5.0
Voraussetzungen für die Vergabe von LP

Klausur K90

Leistungspunkte Noten

5 Leistungspunkte

Modulverantwortlicher

Prof. Dr.-Ing. Stefan Hensel

Empf. Semester 3
Haeufigkeit jedes Semester
Verwendbarkeit

Bachelor MK, Grundstudium

Bachelor MK-plus, Grundstudium

 

Veranstaltungen

Simulation mechatronischer Systeme

Art Vorlesung
Nr. EMI350
SWS 2.0
Lerninhalt

Modellbildung

  • Systembegriff
  • Verfahren der Modellbildung
    • Theoretische Modellbildung
    • Allgemeine Systeme
    • Klassifizierung dynamischer Systeme

Vorgehensweise bei der Simulation

  • Numerische Integration
  • Simulationssysteme
    • Matlab/Simulink
    • Gazebo

Ausgewählte Beispiele zur Simulation mechatronischer Systeme

 

 

Literatur

Glöckler, Simulation mechatronischer Systeme, Wiesbaden, Springer, 2014

Scherf, Modellbildung und Simulation dynamischer Systeme: Eine Sammlung von Simulink-Beispielen, Oldenburg, 2009

Grundlagen mechatronischer Systeme

Art Vorlesung
Nr. EMI349
SWS 2.0
Lerninhalt
  • Begriffsbestimmung der Mechatronik
  • Entwicklungsprozess mechatronischer Systeme
    • V-Modell
    • Schnittstellenproblematik
    • Zuverlässigkeit mechatronischer Systeme
  • Bauteile mechatronischer Systeme:
    • Mechanisch
    • Elektrisch
    • Fluidisch / thermodynamisch
  • Modellbildung in der Mechatronik:
    • Theoretische Modellbildung
    • Parameteridentifikation
  • Kinematik mobiler Systeme
  • Sensoren mechatronischer Systeme
    • Eigenschaften von Sensorsystemen
    • Physikalische Effekte
    • Beschleunigungssensoren
    • Drehratensensoren
    • MEMS Sensorik
  • Prozessdatenverabreitung mechatronischer Systeme
    • Signal- und Datenverarbeitung
      • Kleinster Quadrate Schätzer
      • Kartierung
  • Ausgewählte Beispiele mechatronischer Systeme

 

Literatur

Roddeck, W., Einführung in die Mechatronik, Springer-Vieweg, 2012

Heimann, B., Mechatronik: Komponenten - Methoden - Beispiele, München, Wien, Hanser-Verlag, 2006

Siegwart, R., Introduction to Autonomous Mobile Robots, Cambridge, MIT Press, 2011

Regelungstechnik

Empfohlene Vorkenntnisse Signale, Systeme und Regelkreise (MKp-14)
Lehrform Vorlesung/Labor
Lernziele / Kompetenzen

Die Teilnehmer können anhand der Übertragungsfunktion eines dynamischen Systems das damit zusammenhängende Einschwingverhalten herausarbeiten. Die sind außerdem in der Lage, einschleifige Regelkreise mit algebraischen Verfahren zu entwerfen und auf ihre Stabilität zu untersuchen. Darüber hinaus haben die Teilnehmer ein vielfältiges Repertoire an strukturellen Maßnahmen angehäuft, die über die Standardreglerstruktur hinausgehen und mit denen das Regelkreisverhalten weiter verbesserbar ist.
Die Teilnehmer beherrschen auch Reglerentwurfsverfahren für Mehrgrößenregelkreise und für den Fall begrenzter Stellgrößen. Die erlernten Methoden können von den Teilnehmern auch für den
Digitalrechner aufbereitet werden. Die erlernten Methoden werden im Labor durch praktische Beispiele gefestigt und verhelfen so den Teilnehmern zu einem besseren Urteilsvermögen über die Güte des Einschwingverhaltens eines Regelkreises. Die Teilnehmer beherrschen Verfahren für die Modellbildung und Simulation technischer Prozesse und sammeln Erfahrungen über die Parametrierung und Inbetriebnahme von Regelkreisen.

Dauer 2
SWS 4.0
Aufwand
Lehrveranstaltung 90 h
Selbststudium / Gruppenarbeit: 120 h
Workload 210 h
ECTS 6.0
Voraussetzungen für die Vergabe von LP

Klausur K60, Laborarbeit

Leistungspunkte Noten

6 Creditpunkte

Modulverantwortlicher

Prof. Dr.-Ing. habil. Uwe Nuß

Empf. Semester 6
Haeufigkeit jedes Jahr (WS)
Verwendbarkeit

Bachelor MK, Hauptstudium

Bachelor MK-plus, Hauptstudium

Veranstaltungen

Labor Regelungstechnik

Art Vorlesung/Labor
Nr. E+I255
SWS 2.0
Lerninhalt

- Frequenzgangmessung (Bode-Diagramm und Ortskurve; Schwingversuch)
- Zweipunktregelung
- Analoge und digitale Regler vom PID-Typ
- Lösung von regelungstechnischen Problemen mit Modellbildung und Simulation (Matlab/Simulink)
- Erzeugung von echtzeitfähigem Programm-Code aus einer Computersimulation; Rapid Prototyping

Literatur

Laborumdrucke, Verschiedene Autoren, Hochschule Offenburg, 2000

Föllinger, O., Regelungstechnik : Einführung in die Methoden und ihre Anwendung, 10. Auflage, Heidelberg, Hüthig Verlag, 2008

Regelungstechnik II

Art Vorlesung
Nr. EMI253
SWS 2.0
Lerninhalt

 - Analyse des Strecken- und Regelkreisverhaltens mit Hilfe der Pole und Nullstellen von Übertragungsfunktionen
- Algebraische Stabilitätskriterien
- Vereinfachung des Streckenmodells
- Algebraische Reglerentwurfsverfahren für Standardregler
- Strukturelle Maßnahmen wie Kaskadenregelung, Vorsteuerung und
Störgrößenaufschaltung zur Verbesserung des Regelkreisverhaltens

Literatur

Föllinger, O., Regelungstechnik: Einführung in die Methoden und ihre Anwendung, 13. Auflage, Berlin, Offenbach, VDE Verlag, 2013
Lunze, J., Regelungstechnik 1, 10. Auflage, Berlin, Heidelberg, New York, Springer-Verlag, 2014

Schaltungstechnik

Empfohlene Vorkenntnisse

komplettes Grundstudium

Lehrform Vorlesung/Labor
Lernziele / Kompetenzen

- Begreifen des Verstärkers als Grundfunktion der analogen Signalverarbeitung.
- Fähigkeit zur Verhaltensmodellierung mittels Ersatzschaltbildern und Signalflußbildern.
- Beherrschen der Dimensionierung von Transistor- und Operationsverstärkerschaltungen bei gegebenen
Anforderungen.
- Begreifen der einsatzabhängigen Funktion, der Genauigkeits- und Geschwindigkeitsanforderungen von Analog-
Digital- und Digital-Analog- Wandlern .
- Fähigkeit zum Entwurf und zur Umformung und zur Minimisierung kombinatorischer Schaltungen.
- Verständnis für das Zeitverhalten in digitalen Netzen und Fähigkeit zur Bestimmung des `kritischen Pfads`.
- Fähigkeit zum Entwurf einfacher synchroner Schaltwerke wie Zähler und Zustandsautomaten mit systematischen
Methoden.
- Erlernen der Grundregeln des Entwurfs digitaler Schaltungen.

Dauer 1
SWS 6.0
Aufwand
Lehrveranstaltung 90 h
Selbststudium / Gruppenarbeit: 90 h
Workload 180 h
ECTS 6.0
Voraussetzungen für die Vergabe von LP

Klausur K90, Laborarbeit

Leistungspunkte Noten

6 Creditpunkte

Modulverantwortlicher

Prof. Dr.-Ing. Elke Mackensen

Empf. Semester 3
Haeufigkeit jedes Jahr (WS)
Verwendbarkeit

Bachelor MK, Hauptstudium
Bachelor MK-plus, Hauptstudium

Veranstaltungen

Labor Schaltungstechnik

Art Labor
Nr. E+I224
SWS 2.0
Lerninhalt

Das Schaltungstechnik Labor enthält Versuche sowohl für den Bereich der Analogen- wie auch Digitalen Schaltungstechnik. Der Student bearbeitet in Gruppen zu 2 Studenten 6 Versuche aus folgender Auswahl: Kombinatorische Schaltungen: Aufbau Inverter, Stromaufnahme, Übertragungsverhalten, Störabstand, 2-Bit Addierer, Durchlaufzeit, Logikserie CMOS Differenzverstärker: Simulation eines Differenzverstärkers mit dem Programm PSPICE, Gegentakt und Gleichtaktverstärkung, Frequenzgang, Stabilität, Überragungsverhalten. Operationsverstärker: Messung Übertragungskennlinie, Verstärkung, Eingangsoffsetspannung, Frequenzgang des realen Verstärkers für unterschiedliche Verstärkungen, Aufbau eines 2 poligen aktiven Filters mit dem Operationsverstärker und Messung des Übertragungsverhaltens. Programmierbare Logik: Entwurf der kombinatorischen Schaltung eines Vergleichers und der sequentiellen Schaltung eines kaskadierbaren Dezimalzählers bis `99` mit Enable, synchronem Reset und Carry. Programmierung und Funktionsnachweis auf GAL-Logikbausteinen. A/D-Wandler: Vermessung eines D/A-Wandlers auf Linearität und Restfehler. Aufbau eines A/D-Wandlers
nach dem Verfahren der `successive Approximation`. Basisversuche zum Abtasttheorem. Abtastung eines Signals. Phasenregelkreis: Aufbau eines PLL mit unterschiedlichen Phasendetektoren. Untersuchung des Verhaltens im Zeit- wie im Frequenzbereich. Folgeverhalten, Einrastverhalten, Stabilität. Dimensionierung der Regelparameter. Aufbau eines PLL als Synthesizer. SMD- Technologie: Aufbau einer kleinen Schaltung im SMD-Labor mit SMD-Bausteinen an einem Vakuum- Bestückungsplatz. Reflow- Lötvorgang, Qualitätssicherung unter dem Stereo-Mikroskop, Inbetriebnahme. Der Versuch vermittelt den kompletten SMD- Fertigungsvorgang für moderne Elektronik. FPGA- Entwurf eines Frequenzzählers: Auf einem Logikentwurfssystem für FPGAs (ALTERA-MAX II ) wird die Schaltung eines Frequenzzählers ergänzt und in wesentlichen Komponenten digital simuliert. Das Gesamtsystem wird in einen FPGA gebrannt und in Funktion demonstriert. ECL-Technik: Die Besonderheiten der Emitter Coupled Logic werden untersucht. Messtechnik mit Leitungsabschluss, Logikschaltungen, ECL- Zähler bis 150 MHz. Pegel und Störabstände. Impulsmesstechnik. Umgang mit einem hochwertigen Samplingoszillographen.

 

Literatur

Digitale Schaltungstechnik

Art Vorlesung
Nr. EMI316
SWS 2.0
Lerninhalt

- Grundlagen der Logik, logische Basisfunktionen, Normalformen.
- Kombinatorische Netze, Schaltnetze, statische Logik.
- Digitale Basisschaltungen, TTL, CMOS, innerer Aufbau, Störabstände.
- Minimisierung logischer Netze mit graphischen und rechnerischen Verfahren.
- Isomorphe und nicht- isomorphe Netze.
- Aritmetische kombinatorische Schaltungen (Addierer, Subtrahierer, Multiplizierer).
- Zeitverhalten, kritischer Pfad, Treiberfähigkeit und Belastung.
- Rückkopplung bei Schaltnetzen, Stabilität, Oszillationen.
- Speicherelemente, Flipflops, Register und ihre Behandlung und Anwendung.
- Grundelemente von Zustandsautomaten und ihr systematischer Entwurf.
- Zustandsdiagramm.
- Moore-Automat, Mealey- Automat, sequentielle Schaltwerke

 

Literatur

Jansen, D., Handbuch der Electronic Design Automation, München, Hanser Verlag, 2000

Analoge Schaltungstechnik

Art Vorlesung
Nr. EMI315
SWS 2.0
Lerninhalt

- Verstärkerentwurf: Ideale und reale gesteuerte Quellen zur Modellierung des Verstärkermechanismus`
- Rückgekoppelte Verstärker: Signalflussbild, Schaltung, mathematische Beschreibung
- Differenzverstärker, Operationsverstärker, Fehlerminderung durch Gegenkopplung, idealer - Operationsverstärker,
virtuell- Null- Verfahren, typische Kennwerte kommerzieller Operationsverstärker.
- Schaltungsbeispiele mit Operationsverstärkern: Verstärker mit unterschiedlichen Eigenschaften, Filter,
Messschaltungen; Eigenschaften, Grenzen und Dimensionierungen.
- Stromquellen- und Stromspiegelschaltungen.
- Analog/Digital- und Digital/Analogwandler: Prinzipieller Aufbau in Abhängigkeit von Genauigkeit und
Geschwindigkeit; Verstehen der Spezifikationen, Schnittstellen und Zahlenformate; Kosten- und leistungsgerechte
Bausteinauswahl.

 

Literatur

Tietze U., Schenk C., Gamm E., Halbleiter-Schaltungstechnik, 15. Auflage, Berlin, Heidelberg, Springer Vieweg, 2016

Signale, Systeme und Regelkreise

Empfohlene Vorkenntnisse

komplettes Grundstudium

Lehrform Vorlesung
Lernziele / Kompetenzen

Die Studierenden beherrschen die mathematische Beschreibung des Durchgangs von determinierten Signalen durch lineare, zeitinvariante Systeme im zeitkontinuierlichen als auch im zeitdiskreten Bereich und darauf aufbauend die Grundlagen der linearen Regelungstechnik als Basiswissen für alle Ingenieure.

Dauer 1
SWS 8.0
Aufwand
Lehrveranstaltung 120 h
Selbststudium / Gruppenarbeit: 120 h
Workload 240 h
ECTS 8.0
Voraussetzungen für die Vergabe von LP

zwei Klausuren K 90

Leistungspunkte Noten

2 Klausuren K90

Modulverantwortlicher

Prof. Dr. Ing. Werner Reich

Empf. Semester 3
Haeufigkeit jedes Jahr (WS)
Verwendbarkeit

Bachelor MK, Hauptstudium
Bachelor MK-plus, Hauptstudium
Bachelor EI, Hauptstudium
Bachelor EI-plus, Hauptstudium
Bachelor EI3nat, Hauptstudium
Bachelor MT, Hauptstudium

Veranstaltungen

Regelungstechnik I

Art Vorlesung
Nr. EMI228
SWS 4.0
Lerninhalt

Die Vorlesung gibt eine Einführung in die Regelungstechnik und vermittelt die grundlegenden Konzepte zur Analyse von Regelkreisen und dem Entwurf von Reglern für zeitkontinuierliche, lineare Systeme mit einem Eingang und einem Ausgang (SISO-Systeme). Behandelt werden u.a. folgende Inhalte:

  • Modellierung dynamischer Systeme
    Beschreibung mechatronischer Systeme mittels Differentialgleichungen; Linearisierung nichtlinearer Differentialgleichungen; Simulation eines Systems mittels MATLAB (System Control Toolbox) und MATLAB-Simulink
  • Mathematische Beschreibung und Verhalten von LTI-Systemen
    - Definition und Eigenschaften von LTI-SISO-Systeme
    - Beschreibung und Verhalten im Zeitbereich
      Lösen der Differentialgleichung, Sprungantwort, Impulsantwort, Faltung
    - Beschreibung und Verhalten im Frequenzbereich 
      Anwendung der Laplace-Transformation, Übertragungsfunktion, Frequenzgang, Bode-Diagramm, Ortskurve, Blockschaltbilder
    - grundlegende Übertragungsglieder (P-Glied, I-Glied, PT1, D-Glied, DT1-Glied, PT2-Glied, Totzeit-Glied)
    - Stabilität von Systemen
  • Der Regelkreis
    - Der Standardregelkreis
    - Ziele eine Regelung, Reglerentwurfsaufgabe und Anforderungen
    - Stabilität von Regelkreisen
    - stationäres Verhalten von Regelkreisen
    - Standard-Regler vom Typ PID
    - Reglerauslegung im Zeitbereich: (Methoden von Ziegler-Nichols, Methode v. Chien, Hrones und Reswick
    - Reglerauslegung im Frequenzbereich: vereinfachtes Betragsoptimum (Zeitkonstantenkompensation),  Frequenzkennlinienverfahren
Literatur

O. Föllinger, Regelungstechnik, 12. Auflage, Berlin, VDE Verlag, 2016

J. Lunze, Regelungstechnik I, 11. Auflage, Springer Vieweg, 2016

G. F. Franklin, J. D. Powell, A. Emami-Naeini, Feedback Control of Dynamic Systems, Pearson, 7. Auflage, 2014

 

Signale und Systeme

Art Vorlesung
Nr. EMI227
SWS 4.0
Lerninhalt

1. Fourier-Transformation
- Orthogonale und orthonormale Funktionen, endliche und unendliche Fourier-Reihe
- Bestimmung der Fourier-Koeffizienten: Minimierung der Norm des Fehlersignals
- Gibbs'sches Phänomen; Amplituden- und Phasenspektrum
- Übergang zur Fourier-Transformation: Amplitudendichtespektrum
- Einführung der Distribution Dirac- Impuls
- Linearität, Zeitverschiebung, Ähnlichkeitssatz, Nullwertsätze, Parseval'sche Gleichung
- Faltung zweier Zeitfunktionen, graphische Veranschaulichung
- Systembeschreibung: Impulsantwort, Sprungantwort, Faltungsintegral, komplexer Frequenzgang

2. Laplace-Transformation
- Einführung in die Laplace-Transformation; Eigenschaften und Rechenregeln
- Rechnen im Bildbereich;  Hin- und Rücktransformation
- Anwendung der LP-Transformation auf gewöhnliche Differentialgleichungen mit konstanten Koeffizienten
- Rechnen mit Delta- und Sprungfunktionen
- Übertragungsfunktionen und Frequenzgänge linearer kontinuierlicher Übertragungssysteme

3. Z-Transformation
- Lineare Abtastsysteme;  Definition und Begriffe
- Rechenregeln der Z-Transformation; Hin- und Rücktransformationen
- Lösung der Differenzengleichungen

 

Literatur

Föllinger O., Laplace- und Fourier-Transformation, 10. Auflage, Berlin, Offenbach, VDE-Verlag, 2011

Werner, M., Signale und Systeme, Lehr- und Arbeitsbuch mit MATLAB-Übungen und Lösungen, 3. Auflage, Wiesbaden, Vieweg+Teubner, 2008

Doetsch G., Anleitung zum praktischen Gebrauch der Laplace-Transformation und der Z-Transformation, 6. Auflage, München, Wien, Oldenbourg Verlag, 1989

 

Technische Mechanik II

Empfohlene Vorkenntnisse

Technische Mechanik I

Lehrform Vorlesung/Übung
Lernziele / Kompetenzen

Die Studierenden können:

  • kritische Stellen bezüglich des Versagens von mechanischen Strukturen eingrenzen
  • Normal- und Schubspannungen in (ebenen) mechanischen Strukturen berechnen
  • Zusammenhänge zwischen Spannungen und Dehnungen herstellen und den Anwendungsbereich für linearelastisches Verhalten abstecken
  • die für verschiedene Belastungsfälle (Zug, Druck, Biegung, Torsion) begrenzenden Spannungen identifizieren
  • den Einfluss der Querschnittsform und des Kraftangriffs bei der Biegung beurteilen
  • statische und dynamische Belastungsfälle unterscheiden und die begrenzenden Materialeigenschaften benennen
  • komplexe Belastungssituation als Überlagerung einfacher Belastungsfälle zusammensetzen
  • Vergleichsspannungen bei komplexen Belastungssituationen ermitteln

 

Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 5.0
Voraussetzungen für die Vergabe von LP

Klausur K 90

Leistungspunkte Noten

5 Creditpunkte

Modulverantwortlicher

Prof. Dr. rer. nat. Michael Wülker

Empf. Semester 3
Haeufigkeit jedes Jahr (WS)
Verwendbarkeit

Bachelor MK, Hauptstudium
Bachelor MK-plus, Hauptstudium

Veranstaltungen

Technische Mechanik II

Art Vorlesung
Nr. M+V606
SWS 4.0
Lerninhalt

Festigkeitsbetrachtungen erlauben es, Gefahrenpotentiale für das Versagen mechanischer Strukturen abzuschätzen, und bilden somit die Grundlage für die Dimensionierung von mechanischen Bauteilen und Strukturen wie Roboterstrukturen, Trägern, Wellen etc. Weiterhin ist für die Auslegung von Toleranzen von Interesse, wie sich mechanische Strukturen unter Einwirkung zulässiger Kräfte verformen und welche Spannungen bei Zwangsverformungen entstehen.


A) Im Rahmen der linearen Elastizitätstheorie werden der ein- und mehrachsige Normalspannungszustand sowie die Hookeschen Gesetze für Normal- und Schubspannungsbeanspruchung behandelt.

B) Für biegebeanspruchte Bauteile wird unter Berücksichtigung der Querschnittsform und Belastungseinleitung die Methode zur Berechnung der Biegespannungen erläutert (Biegespannungsfunktion, Flächenträgheitsmomente, Hauptachsen und Hauptträgheitsmomente, gerade und schiefe Biegung). Die Ermittlung der elastischen Verformung mittels Integrationsmethode, Satz von Castigliano und Superpositionsmethode stellt einen weiteren wesentlichen Bestandteil der Behandlung biegebeanspruchter Bauteile dar.

C) Die Ausführung zur Schubbeanspruchung beinhaltet unter anderem den Schubspannungsverlauf bei Querkraftschub sowie die Definition des Schubmittelpunktes.

D) Bei der Behandlung der Torsionsbeanspruchung wird auf die Berechnung der Torsionsschubspannung und die Verformung von Voll- und Hohlquerschnitten eingegangen.

E) Erläutert werden die wichtigsten Vergleichsspannungshypothesen zur Überlagerung von Normal- und Schubspannungen, die Begriffe der Zeit- und Dauerfestigkeit sowie der Kerbwirkung. Behandelt wird die Berechnung statisch überbestimmter Systeme nach verschiedenen Methoden.

F) Stabilitätsprobleme und deren analytische Behandlung werden am Beispiel der Knickung druckbeanspruchter Stäbe (elastische und plastische Knickung) dargelegt.

Literatur
  • Technische Mechanik. Band 2: Elastostatik, Hydrostatik Gross D., Hauger W., Schell W. Springer 2011
  • Technische Mechanik, Band 2: Festigkeitslehre, Hibbeler RC, Pearson Studium 2006
  • Formeln und Aufgaben zur Technischen Mechanik 2: Elastostatik, Hydrostatik, Gross D., Ehlers W., Schröder J., Springer 2011
  • Technische Mechanik, Band 2: Festigkeitslehre, Assmann B., Oldenbourg 2000
  • Taschenbuch für den Maschinenbau, Dubbel H.; Beitz W., Küttner K.-H. (Hrsg.), Springer 2011

Technische Mechanik III

Empfohlene Vorkenntnisse

Technische Mechanik I, II

Lehrform Vorlesung/Übung
Lernziele / Kompetenzen

Die Studierenden können

  • die Bewegung eines Punktes wie auch einer Scheibe in der Ebene bestimmen und analysieren.
  • sicher mit den Begriffen Arbeit, Energie, Leistung, Impuls, Drehimpuls umgehen und Zusammenhänge herstellen
  • die Bewegung eines Körpers infolge einwirkender Kräfte und Momente beschreiben
  • die aus der Drehbewegung eines Körpers resultierenden Kräfte und Momente berechnen
  • das Verhalten von Körpern nach einem Stoß beurteilen
  • einfache Kreiselbewegungen ermitteln
  • lineare Schwingungen von Punktmassen und Körpern in der Ebene analysieren
  • Schwingungsdifferentialgleichungen aufstellen und Eigenschwingungsformen und -frequenzen ermitteln
Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 5.0
Voraussetzungen für die Vergabe von LP

Klausur K90

Leistungspunkte Noten

5 Creditpunkte

Modulverantwortlicher

Prof. Dr.-Ing. Gerhard Kachel

Empf. Semester 4
Haeufigkeit jedes Jahr (WS)
Verwendbarkeit

Bachelor MK, Hauptstudium
Bachelor MK-plus, Hauptstudium

Veranstaltungen

Technische Mechanik III

Art Vorlesung
Nr. M+V607
SWS 4.0
Lerninhalt

Die Vorlesung beinhaltet Kinematik und Kinetik. In der Kinematik (Bewegungslehre) wird die Abhängigkeit zwischen den Größen Weg, Geschwindigkeit, Beschleunigung und Zeit bei der Bewegung von Massenpunkten und starren Körpern ohne Berücksichtigung der die Bewegung verursachenden Kräfte bzw. Momente untersucht.


Für ein- und mehrdimensionale Bewegungsvorgänge mit unterschiedlichem Beschleunigungs- bzw. Geschwindigkeitsverhalten werden die entsprechenden Gesetzmäßigkeiten hergeleitet.
Die allgemeine Bewegung starrer Körper wird anschaulich zurückgeführt auf translatorische und rotatorische Phasen; erörtert werden Begriffe wie momentaner Drehpol und Beschleunigungspol. Die Kinematik schließt ab mit der grafischen und analytischen Behandlung von Relativbewegungen.
In der Kinetik werden das d`Alembertsche Prinzip, der Arbeitssatz, der Energieerhaltungssatz sowie der Impuls- und Drehimpulssatz für Massenpunkte und starre Körper behandelt und zur Lösung unterschiedlicher Aufgabenstellungen (z.B. bei Wurf, Rotationsbewegung und Stoßvorgänge) herangezogen. Die Ausführungen zur Kinetik starrer Körper beinhalten weiterhin die Berechnung der Massenträgheitsmomente und die Gesetze der Kreiselbewegung bei geführter Achse.
Im dritten Komplex werden freie und erzwungene Schwingungen mit einem Freiheitsgrad (ungedämpft und gedämpft) sowie ungedämpfte Mehrmassensysteme (z.B. Ermittlung kritischer Drehzahlen) untersucht. Besonderes Gewicht wird auf die Ermittlung von Eigenschwingungsformen und -frequenzen gelegt.


Ausgewählte Anwendungsbeispiele und wöchentliche Übungen sind wichtiger Bestandteil der Lehrveranstaltung.

Literatur

Hibbeler, R.C., Technische Mechanik, Band 3: Dynamik, Pearson Studium 2006
Gross, D., Hauger, W., Schell, W., Schröder, J., Technische Mechanik, Band 3: Kinetik, Springer, 2008
Assmann, B., Technische Mechanik, Band 3: Kinematik und Kinetik, Oldenbourg, 2010
Dubbel, H., Beitz, W., Küttner, K.-H., Taschenbuch für den Maschinenbau, Springer, 2007

Vertiefung Maschinenbau

Empfohlene Vorkenntnisse

komplettes Grundstudium, Maschinenelemente

Lehrform Vorlesung/Labor
Lernziele / Kompetenzen

In diesem Modul werden die Funktion, der Aufbau sowie die konstruktive Gestaltung und die bei den einzelnen Maschinen zu berücksichtigenden Fertigungsmöglichkeiten sowie deren Einsatzmöglichkeiten kennen gelernt.
Die Studierenden müssen in der Lage sein, den groben Arbeitsplan für die Herstellung eines Werkstücks zu erstellen, d.h. sie legen die Fertigungsverfahren fest, bestimmen die Werkzeuge und die Technologie und ermitteln die erforderlichen Spannmittel.
Die Auswahl der am besten geeigneten Maschine soll erfolgen. Die Bestimmung der Wege und Zeiten als Grundlage für eine spätere Kostenermittlung wird anhand von Beispielen geübt.

Lernziele für die Wahlpflichtfächer:
Die Studierenden können ihre Interessen im Bereich des Maschinenbaus soweit selbst beurteilen, daß sie sich für die Mechatronik sinnvolle maschinenbauliche Ergänzungen aussuchen, die ihnen vertiefte Kenntnisse ermöglichen.

Dauer 2
SWS 4.0
Aufwand
Lehrveranstaltung 105 h
Selbststudium / Gruppenarbeit: 135 h
Workload 240 h
ECTS 6.0
Voraussetzungen für die Vergabe von LP

Klausur K60, Laborarbeit, weitere Klausur gemäß Wahlpflichtfachliste

Leistungspunkte Noten

6 Creditpunkte

Empf. Semester 6/7
Haeufigkeit jedes Jahr (SS)
Verwendbarkeit

Bachelor MK-plus, Hauptstudium

Veranstaltungen

Grundlagen Fertigungsverfahren

Art Vorlesung
Nr. M+V611
SWS 2.0
Lerninhalt

Grundlagen der Zerspanung mit geometrisch definierter Schneide
Kinematik der Zerspanung
Spanungsgrößen, Spanbildungsvorgang, Spanarten und Spanformen
Mechanische, thermische und chemische Beanspruchung beim Spanen
Schneidstoffe, Werkzeugverschleiss,Kühlschmierstoffe
Zerspanbarkeit und Gefüge bei Eisenwerkstoffen
Zerspanbarkeit von Stählen, Eisengusswerkstoffen und Aluminiumlegierungen

Drehen:
Drehverfahren, Drehwerkzeuge
Oberfläche beim Drehen, Werkstückspannelemente, Technologie beim Drehen, Kraft- und Leistungsermittlung, Ermittlung der Zeiten und Wege, Fehler beim Drehen und deren Behebung
Bohren, Senken, Reiben:
Bohrverfahren, Zerspanprozess Bohren am Beispiel eines Wendelbohrers, Bohrwerkzeuge, Bohrerspannelemente, Technologie beim Bohren, Kraft- und Leistungsermittlung, Wege und Zeiten, Fehler beim Bohren, Senken, Reiben, Gewindebohren

Fräsen:
Fräsverfahren, Walzenfräsen/Umfangsfräsen, Stirnfräsen, Drehfräsen, Gewindefräsbohren, Werkzeugspannelemente, Technologie beim Fräsen, Fehler beim Fräsen.
Weitere spanende Fertigungsverfahren.

Literatur

Blume, F., Einführung in die Fertigungstechnik, VEB, 1990

Fritz/Schulze, Fertigungstechnik, VDI, 1995

König, W., Fertigungsverfahren Bd.1,2, VDI, 1990

Spur, G, Stöferle, T., Handbuch der Fertigungstechnik, Bd. 3/2 Spanen, Carl Hanser, 1980

Tschätsch, H., Handbuch der Spanenden Formgebung, Hoppenstedt, 1991

Schönherr, H., Spanende Fertigung, Oldenbourg, 2002

Schulz, H., Vorlesungsskipt Fertigung und Werkzeugmaschinen, 2000

Vieregge, G., Zerspanung der Eisenwerkstoffe, Bd. 16, Stahleisen, 1970

Wahlpflichtfächer Maschinenbau

Art Vorlesung
Nr. M+V615
SWS 2.0
Lerninhalt

Bisher wurden regelmäßig CAD/CAE und Schweißtechnik mit Labor angeboten.

Lerninhalt bei der Wahl von CAD/CAE:
In diesem Modulbaustein soll das sinnvolle Bedienen moderner Systeme erlernt werden. Neben fortgeschrittenen Bedienfunktionen, parametrischer Konstruktion und Konstruktionsänderungen in einer vorhandenen Baugruppe sollen FEM- und MKS-Berechnungen an Einzelteilen und Baugruppen direkt aus dem CAD erlernt werden. Dabei sollen Festigkeits- und Wärmeleitungseigenschaften der Werkstoffe berücksichtigt werden.

Lerninhalte bei der Wahl von Schweißtechnik mit Labor:
Die Studierenden sollen in der Lage sein, unter Berücksichtigung der Konstruktions- und Werkstoffvorgaben die einzelnen Schweißverfahren und thermischen Trennverfahren kritisch zu beurteilen und anzuwenden. Um dieses Wissen zu erwerben, ist die Arbeit in kleinen Teams innerhalb des Schweißlabors hilfreich.

Literatur

Wird jeweils von den Dozenten des Wahlmoduls angegeben oder kann dem entsprechenden Modulhandbuch entnommen werden.

 Zurück